homehome Home chatchat Notifications


MIT research might help UAVs fly with the agility of hawks

Current unmanned aerial vehicles (UAV), commonly referred to as drones, are packed with state of the art technology, but despite this they’re not very smart as far as maneuvering around obstacles is concerned. Birds, for instance, can fly through forests at incredible speeds, traveling through out the whole woods  at times, with no risk of […]

Tibi Puiu
January 20, 2012 @ 1:38 pm

share Share

Current unmanned aerial vehicles (UAV), commonly referred to as drones, are packed with state of the art technology, but despite this they’re not very smart as far as maneuvering around obstacles is concerned. Birds, for instance, can fly through forests at incredible speeds, traveling through out the whole woods  at times, with no risk of collision what so ever. MIT scientists are now determined to apply the principles which allow birds to evade obstacles at high speeds to the drones of the future. Be afraid!

northern goshawk When navigating around obstacles, UAVs have to fly at rather low-speeds, since they have to be able to stop within their sensors’ view.

“If I can only see up to five meters, I can only go up to a speed that allows me to stop within five meters, which is not very fast,” says Emilio Frazzoli, an associate professor of aeronautics and astronautics at MIT.

The northern goshawk is a fierce predator that swirls through threes at lightning speed to catch its pray, mostly small mammals. To reach these great speeds, while dodging stones, trees and branches at the same time, the hawk has a sense of maximum theoretical speed it can reach, and stays within these limits, the researchers say. It does this by scanning the density of obstacles, like the number of trees divided across a surface in the forest, and thus it can know for sure that if it goes through an opening through the trees over which it currently has no field of vision, it will be safe to fly nevertheless since it will find another one. The researchers found that there exists a speed below which a bird — and any other flying object — has a fair chance of flying collision-free. If this limit is crossed, the bird or aircraft is sure to collide with an obstacle.

The same principles applies to downhill skiers as well.

“When you go skiing off the path, you don’t ski in a way that you can always stop before the first tree you see,” he says. “You ski and you see an opening, and then you trust that once you go there, you’ll be able to see another opening and keep going.”

Frazzoli and PhD student Sertac Karaman managed to mathematically describe both the bird’s and skier’s intuition after they developed models of various forest densities, calculating the maximum speed possible in each obstacle-filled environment. They then adjusted the model to represent varying densities of trees, and calculated the probability that a bird would collide with a tree while flying at a certain speed.

The scientists’ research is still in this theoretical phase, and the researchers are now working with Harvard to study hawks in the forest environments and see if the theoretical model is precise enough. Next, Frazzoli wants to see how close humans can come to such theoretical speed limits, and is developing a first-person flying game.

“What we want to do is have people play, and we’ll just collect statistics,” Frazzoli says. “And the question is, how close to the theoretical limit can we get?”

source / image credit

share Share

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes

From Pangolins to Aardvarks, Unrelated Mammals Have Evolved Into Ant-Eaters 12 Different Times

Ant-eating mammals evolved independently over a dozen times since the fall of the dinosaurs.

The 400-Year-Old, Million-Dollar Map That Put China at the Center of the World

In 1602, the Wanli Emperor of the Ming dynasty had a big task for his scholars: a map that would depict the entire world. The results was a monumental map that would forever change China’s understanding of its place in the world. Known as the Kunyu Wanguo Quantu (坤輿萬國全圖), or A Map of the Myriad […]

Scientists Just Rediscovered the World’s Smallest Snake — Thought Lost for 20 Years

A blind, worm-sized snake was hiding under a rock in Barbados all along

A New AI Can Spot You by How Your Body Bends a Wi-Fi Signal

You don’t need a phone or camera to be tracked anymore: just wi-fi.

7,000 Steps a Day Keep the Doctor Away

Just 7,000 steps a day may lower your risk of death, dementia, and depression.

These Dolphins Use Sea Sponges on Their Faces to Hunt and It’s More Complicated Than Anyone Thought

Dolphins in Australia pass down a quirky hunting tool that distorts their sonar but boosts their success.

Scientists transform flossing into needle-free vaccine

In the not-too-distant future, your dentist might do more than remind you to floss—they might vaccinate you, too.

How Some Butterflies Fooled Evolution and Developed a Second "Head"

They did it to trick predators and it worked.