homehome Home chatchat Notifications


Scientists make semiconductor-free chip that work similarly to vacuum tubes

Taking hints from pre-1950s technology, researchers devised semiconductor-free electronics that operate faster and can handle more power.

Tibi Puiu
November 9, 2016 @ 2:49 pm

share Share

Scientists have devised a metamaterial that liberates free electrons, sort of like vacuum electronics. The resulting semiconductor-free device operates at speed, wavelength, and power handling far greater than what’s available today.

The semiconductor-free microelectronics device fabricated by the University of California, San Diego. Source: UCSD

The semiconductor-free microelectronics device fabricated by the University of California, San Diego. Source: UCSD

On 10 May 1954, in front of an audience of baffled scientists and engineers, Gordon Teal of Texas Instruments Inc. made one of the most important announcements of the past centuries. Teal carefully pulled out several objects out of his pocket and immediately jaws dropped — these were silicon transistors. Today, probably 95% of all semiconductors — essential materials for any electronics component — are fabricated from silicon, despite the first transistor was a germanium device.

Before silicon or germanium transistors came along, however, all electronics used vacuum tubes in their construction. These tubes consumed a great deal of electrical power and gave off enormous heat, so the transistor was seen as a fantastic upgrade, ushering a new age of miniaturization that continues to this day. However, these wonder electronics aren’t perfect. Some electronics applications feel the limits of silicon transistors because the velocity of electrons is limited by the resistance of the material. To get these electrons flowing through the band gap between a semiconductor’s insulating and conducting properties, you need to supply more ‘juice’.

Researchers at the University of California, San Diego (UCSD) sought to get around this problem by taking some hints from ancient electronics history and reverting back to the principle of operation of tube electronics which involves free electrons. 

Electron scanning microscope image of the metasurface laced with gold nanoparticles. Credit: UCSD

Electron scanning microscope image of the metasurface laced with gold nanoparticles. Credit: UCSD

Of course, there’ are many reasons why vacuum tubes aren’t used in modern electronics, one of them being that dislodging free electrons at the nanoscale is very challenging. The researchers got around this issue by making a metamaterial which a patterned surface to liberate electrons from gold nanostructures. The new device can be activated by low DC voltage and a low-power laser, allowing it to operate with a 1,000% increase in conductivity, as reported in Nature

These sort of devices could lead to semiconductor-free switches, transistors, photo detectors or photovoltaic cells that are capable of handling much more power than traditional devices. That’s not to say that your next smartphone or computer will stop using semiconductors — no chance, but some applications could hugely benefit from vacuum tube style switching.

“This certainly won’t replace all semiconductor devices, but it may be the best approach for certain specialty applications, such as very high frequencies or high-power devices,” says Dan Sievenpiper, professor of electrical engineering at UCSD.

Such an implementation may be a key to developing semiconductor-free switches, transistors, photo detectors or even photovoltaic cells in the future that are faster and capable of handling more power than traditional devices.

share Share

Coastal Flooding Is Much Worse Than Official Records Show — and No One’s Measuring It

There were big flaws in how we estimated floods in coastal communities.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

Huge Centuries-Old Human Figures Carved in Sandstone Are Suddenly Visible Again on Hawaii Beach

Beneath the shifting sands of an Oahu beach, ancient carvings — hidden for years — have suddenly reemerged.

A Popular Artificial Sweetener Could Be Making Cancer Treatments Less Effective

Sucralose may weaken immunotherapy by altering gut microbes and starving immune cells

AI Designs Computer Chips We Can't Understand — But They Work Really Well

Can we trust systems we don’t fully understand?

Strength Training Unlocks Anti-Aging Molecules in Your Muscles

Here’s how resistance training can trigger your body’s built-in anti-aging switch.

"Self-termination is most likely." This expert believes our civilization is on a crash course led by narcissistic leaders

Our civilization may be facing a “single gargantuan crash,” but collapse isn’t destiny. It’s a choice.

New DNA Evidence Reveals What Actually Killed Napoleon’s Grand Army in 1812

Napoleon's army was the largest Europe had ever seen, but in just a few months it was obliterated.

Breathing This Common Air Pollution May Raise Your Dementia Risk by 17 Percent

Long-term exposure to common air pollutants like soot and traffic fumes may significantly raise your risk of dementia.

This mRNA HIV Vaccine Produces the Virus-Fighting Antibodies That Have Eluded Researchers for 40 Years

New mRNA-based HIV vaccines spark hope with potent immune responses in first human trial