homehome Home chatchat Notifications


Scientists develop the blackest material ever

Just in time for Halloween, scientists have developed the blackest material - a material so dark that it absorbs almost all the light that hits its surface.

Mihai Andrei
October 27, 2015 @ 6:52 am

share Share

Just in time for Halloween, scientists have developed the blackest material – a material so dark that it absorbs almost all the light that hits its surface.

From a complex porous structure to a nanostructure system that absorbs light. Image credits: Huang et al, 2015.

The new material, developed by researchers from Saudi Arabia’s King Abdulla University of Science and Technology, is built from carbon nanotubes – in fact, a series of small nanoparticle spheres, each with an nano-cylinder on top. The result is a material that absorbs 98 to 99 percent of light in the spectrum between 400 and 1,400nm – which is more than the human eye can even see. A typical human eye will respond to wavelengths from about 390 to 700 nm.

The structure of the optical black body. Image credits: Huang et al, 2015.

This sphere absorbs 26% more light than any other known material, from every angle. The applications for this technology are very important, ranging from solar panels to optical communication.

“Engineering broadband light absorbers is crucial to many applications, including energy-harvesting devices and optical interconnects. The performances of an ideal absorber are that of a black body, a dark material that absorbs radiation at all angles and polarizations,” researchers write in the study.

Rather interestingly, the idea for this technology came from a white cyphochilus beetle. Cyphochilus is a genus of beetle with unusually bright white scales on the body, generally found in southeast Asia. The whiteness of the scales is caused by a thin layer of a highly reflective natural photonic solid in its scales, though the exoskeleton of the beetle underneath the scales is black. The team tried to replicate that technology, and instead of avoiding light, absorb it.

“The material comprises nanoparticles composed of a nanorod with a nanosphere of 30 nm diameter attached. When diluted into liquids, a small concentration of nanoparticles absorbs on average 26% more than carbon nanotubes, the darkest material available to date,” they conclude.

Journal Referece: Jianfeng Huang, Changxu Liu, Yihan Zhu, Silvia Masala, Erkki Alarousu, Yu Han & Andrea Fratalocchi. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nature Nanotechnologydoi:10.1038/nnano.2015.228

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.