homehome Home chatchat Notifications


This machine 3-D prints metal objects in mid-air

Harvard researchers have demonstrated an all new 3-D printing technique that creates metals objects with complex shapes right in mid-air. This is fundamentally different from the approach of traditional 3-D printers which ooze polymer material layer by layer.

Tibi Puiu
May 17, 2016 @ 5:08 pm

share Share

mid-air-3d-printing

Credit: YouTube

Harvard researchers have demonstrated an all new 3-D printing technique that creates metals objects with complex shapes right in mid-air. This is fundamentally different from the approach of traditional 3-D printers which ooze polymer material layer by layer. The new fabrication technique could prove very useful in the production of  flexible, wearable electronics, sensors, antennas, and biomedical devices.

To make objects in mid-air, the Harvard printer injects silver nanoparticles through the nozzle, then immediately fires a focused laser beam onto the material to harden it. The nozzle can move along x, y, and z axes, but also in a combination with a rotary print stage. This high degree of freedom means complex metal shapes can be printed, previously difficult if not impossible to make with traditional techniques.

As you can see in the demo video below, the researchers made anything from coils to  a butterfly made of silver wires narrower than a hair’s width.

This was a tricky job, though. The main challenge was syncing the nozzle “ink” and the laser, the researchers report in Proceedings of the National Academy of Sciences.

“If the laser gets too close to the nozzle during printing, heat is conducted upstream, which clogs the nozzle with solidified ink,” said Wyss Institute Postdoctoral Fellow Mark Skylar-Scott. “To address this, we devised a heat transfer model to account for temperature distribution along a given silver-wire pattern, allowing us to modulate the printing speed and distance between the nozzle and laser to elegantly control the laser annealing process ‘on the fly.’”

“This sophisticated use of laser technology to enhance 3-D printing capabilities not only inspires new kinds of products, it moves the frontier of solid free-form fabrication into an exciting new realm, demonstrating once again that previously accepted design limitations can be overcome by innovation,” said Wyss Institute Director Donald Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, as well as professor of bioengineering at SEAS.

share Share

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.