homehome Home chatchat Notifications


Recycled wool turned into memory textile that always remembers its shape

Researchers have programmed keratin sheets to always fold back to their designed shape -- not matter how complex.

Tibi Puiu
September 4, 2020 @ 11:16 am

share Share

Although it is possible to shape your hair either by straightening or curling, the moment it touches water, the hair will return to its original shape. By exploiting this property, researchers at Harvard University have devised a wool-based material that has hair-like shape memory, which might inspire a new generation of textiles and smart, one-size-fits-all clothing that stretches or shrinks based on a person’s measurements.

3-D printed keratin sheet returns to its pre-programmed origami star shape when bathed in water. Credit: Harvard University.

The secret to hair’s shape memory is keratin, a fibrous protein arranged in a chain of hierarchical structures. One single chain of keratin is itself arranged in a spring-like structure known as the alpha-helix. When two of these chains twist together, they form a coiled-coil structure. Many of these latter structures are assembled into protofilaments, before eventually joining together to form large fibers of hair.

This arrangement of the alpha-helix and connective chemical bonds is one of the reasons why hair is as strong as steel. It also explains the shape memory of the hair strand: when fibers are exposed to a particular stimulus, such as heat from a hair straightener, the spring-like structures uncoil. The fibers will coil back into their original shape when triggered by a new stimulus, such as water.

Engineers at Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) found these characteristics very appealing. They extracted keratin from leftover Agora wool from textile manufacturing, which they then incorporated into a 3-D printable, biocompatible material.

To program a particular shape in the material’s memory, a solution of hydrogen peroxide and monosodium phosphate was employed. The sheet of 3-D printed, recycled keratin can then be molded into any desired shape until triggered to return to its original design.

For instance, one such keratin sheet was programmed to fold into a complex origami star as its original shape. The keratin star was then bathed in water, becoming malleable. The unfolded sheet was then rolled into a tight tube. Once the sheet dried, it was locked into a functional tube. But when the tube was put back in water, it unrolled and folded back into the origami star.

“With this project, we have shown that not only can we recycle wool but we can build things out of the recycled wool that have never been imagined before,” said Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics at SEAS and senior author of the paper. “The implications for the sustainability of natural resources are clear. With recycled keratin protein, we can do just as much, or more, than what has been done by shearing animals to date and, in doing so, reduce the environmental impact of the textile and fashion industry.”

According to Parker and colleagues, these keratin sheets can be employed in a vast range of applications, from textile to tissue engineering. Imagine brassieres whose cup size and shape can be molded and shaped every day to fit a person’s needs and measurements, for instance.

 “We are continuing to reimagine textiles by using biological molecules as engineering substrates like they have never been used before,” Parker said.

The findings appeared in today the journal Nature Materials.

share Share

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.

The Strongest Solar Storm Ever Was 500 Times More Powerful Than Anything We've Seen in Modern Times. It Left Its Mark in a 14,000-Year-Old Tree

The ancient event, over 500 times stronger than any modern storm, would be devastating were it to happen today.