homehome Home chatchat Notifications


LHC passes 'hardest' test yet: ping-pong ball blazes through particle accelerator

How do you check a multi-billion dollar particle accelerator for defects or malfunctions? Sure, you could use various, equally expensive and sophisticated tools, but in some instances low tech comes in the aid of high tech, say a ping-pong ball. Wait, what ?! Yup, today researchers  sent a carefully sterilized, slightly-smaller-than-regulation ping-pong ball through a 2-mile […]

Tibi Puiu
April 16, 2013 @ 4:07 pm

share Share

The Large Hadron Collider may have shut down, but physicists are using some unusual techniques to test it, including a ping-pong ball.

The Large Hadron Collider may have shut down, but physicists are using some unusual techniques to test it, including a ping-pong ball.

How do you check a multi-billion dollar particle accelerator for defects or malfunctions? Sure, you could use various, equally expensive and sophisticated tools, but in some instances low tech comes in the aid of high tech, say a ping-pong ball. Wait, what ?! Yup, today researchers  sent a carefully sterilized, slightly-smaller-than-regulation ping-pong ball through a 2-mile section of the Large Hadron Collider. The LHC passed the ping-pong ball test flawlessly.

The ping-pong-ball is actually called a radio-frequency ball by scientists and holds a tiny transmitter inside. To blaze it through the particle accelerator,  simple force of suction is used, ping its position every third of a mile through its transmitter.

“The beam pipes are fragile,” says Vincent Baglin, the leader of the LHC beam vacuum section at CERN. “We always have to check and crosscheck to minimize any problems. This is a simple test that can prevent complicated issues.”

What they were actually looking to test are the connections between magnets, which are at risk of deterioration as temperature changes since they’re installed at room temperature, but need to operate below freezing when experiments are made. The LHC has 17 miles in circumference, but it’s not entirely circular; instead, it’s made out of eight straight sections, joined together by eight arcs.  More than 1600 magnets bend and focus the beams of particles that circle the collider at close to the speed of light. Interconnections, some of which resemble long, copper fingers, ensure that electricity flows from one magnet to the next.

This rather significant temperature difference causes these copper fingers to contract, typically by 40 millimeters, which isn’t necessarily a problem, but sometimes one or more of these fingers buckles and blocks particle beams. Since there are so many interconnections, if a problem arises, the researchers would have to start and shutdown the LHC repeatedly and find where the beam is blocked – a process which might take months. Instead, the scientists have opted for a more ingenious solution that only takes 15 minutes per section.  Rather than sending a beam through the pipe, they send the RF ball. How do they know if a connection is out of order? Simple, if the ball gets stuck, then we’ve got a problem.

For today’s test, the LHC passed without any issues, however it will pass through many such tests and others before its scheduled restart in 2015.

via Symmetry Mag

 

share Share

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Japanese Scientists Just Summoned Lightning with a Drone. Here’s Why

The drone is essentially a mobile, customizable, lightning rod.

Packed Festival Crowds Actually Form Living Vortices -- And You Can Predict Them with Physics

The physics of crows explains why they sometimes move like waves.

Scientists Found a Way to Turn Falling Rainwater Into Electricity

It looks like plumbing but acts like a battery.

This Simple Trick Can Make Your Coffee Taste Way Better, Says Physics

If you love pour-over coffee it could serve you well to change how you pour.

Earth Might Run Out of Room for Satellites by 2100 Because of Greenhouse Gases

Satellite highways may break down due to greenhouse gases in the uppermost layers of the atmosphere.

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.