homehome Home chatchat Notifications


Islamic art inspires metamaterial that grows when stretched

A new type of metamaterial that can grow when stretched, with possible applications for medical equipment and satellites, was inspired by an unlikely source -- ancient Islamic art.

Alexandru Micu
March 16, 2016 @ 11:44 pm

share Share

A new type of metamaterial that can grow when stretched, with possible applications for medical equipment and satellites, was inspired by an unlikely source — ancient Islamic art.

Most materials, such as cotton, plastic or rubber, stretch in one direction and become thinner in another when you pull on them. Some metamaterials however, a class of materials engineered specifically to have properties that don’t occur naturally, can be designed to grow as you pull on them.

It all comes down to the way they’re structured at a microscopic level. If you zoom in enough, you’ll see that they’re typically made up of a series of interconnected squares. When pulled apart, these squares turn relative to one another, increasing the total volume of the material — in essence, becoming larger. But this comes at the price of losing the original shape of the material as it expands.

Ahmad Rafsanjani and Damiano Pasini of McGill University in Montreal, Canada, set out to create a material that would grow when stretched but keeps its form. And they turned to the beautifully intricate geometry of ancient Islamic arhitecture.

Some of the designs that the team used as inspiration.
Image credits A Rafsanjani/McGill University.

 

“There is a huge library of geometries when you look at Islamic architectures,” says Rafsanjani.

The team picked their designs out of the over 70 patterns adorning the walls of Iran’s Kharragan towers, two mausoleums built in 1067 and 1093 in the northern part of the country. The mausoleums are decorated with intricate patterns of both repeating and alternating shapes, separated by either parallel or circular cuts.

Based on the same design features, the team fashioned the new metamaterial from natural rubber. When pulled on, it can expand into a larger volume that the original by leaving open spaces in between the shapes.

“I introduced some cuts and some hinges, but the pattern is exactly the same,” says Rafsanjani.

The new material, based on designs nearly a thousand years old.
Image credits A Rafsanjani/McGill University

Rafsanjani presented the materials at a meeting of the American Physical Society in Baltimore, Maryland, on 15 March.

The ability of the material could make it useful for an array of applications, such as inserting medical devices inside veins and arteries, or deploying new satellites that unfold in space.

share Share

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.