homehome Home chatchat Notifications


Skin-like material that stretches and senses might bring the tactile to the artificial

In the new mobile information age where smartphones have become an ever common part of our lives, there seems to be a dominant trend which tends to incorporate interactive touch screen capabilities to more and more consumer electronics. It’s pretty clear that our electronics are getting smarter day by day – I, for one, am […]

Tibi Puiu
October 26, 2011 @ 9:56 am

share Share

Captioned above is the Stanford University developed transparent sensor, which is capable of stretching to great lengths without getting deformed. (c) Stanford University

Captioned above is the Stanford University developed transparent sensor, which is capable of stretching to great lengths without getting deformed. (c) Stanford University

In the new mobile information age where smartphones have become an ever common part of our lives, there seems to be a dominant trend which tends to incorporate interactive touch screen capabilities to more and more consumer electronics. It’s pretty clear that our electronics are getting smarter day by day – I, for one, am still waiting for the next generation of vacuums to outwit me – and as such, the demand for innovative interactive tech is high.

Researchers at Stanford University have made a great forward in this sense after they developed a highly ductile smart-material, filled with sensors, while has the capability to stretch and return to its original size without a problem; much like the human skin. The material is made out of two layers of sillicon, coated by extremely thin single-walled carbon nanotubes, which basically act like two parallel plates. When one of the layers is pressed, the distance between the layers becomes thinner, the capacity of the sensor is increased. Silicone can store electrical charge, and thus whenever this charge is modified by pressing the plates, it is quantified by the sensors which can correlate the charge to a pressure. Basically, the material can feel, or rather sense.

RELATED: Scientists create artificial muscles from nanotubes 

The highly important stretching ability is offered by the carbon nanotubes characteristics. After being sprayed on to the sillicone layer, they randomly positioned themselves. When they are tensioned, the nanotubes stretch orientating towards the stretch direction, only to revert to their exact initial position when released.

The stretchy sensor can detect a wide array of touches, according to Darren Lipomi, a postdoctoral researcher on the team. Just like skin, the material can sense whether it’s being pressed or pinched.

Applications are numerous, the most realistic example being the prosthetic industry. However, think of robots capable of extremely sensitive manipulations, instead of the stiff maneuvers conventional robots have today. You wouldn’t want to shake hands with a robotic arm, nowadays.

wired

share Share

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Big Tech Said It Was Impossible to Create an AI Based on Ethically Sourced Data. These Researchers Proved Them Wrong

A massive AI breakthrough built entirely on public domain and open-licensed data

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

The tiny etching is smaller than a speck of dust but signals big advances in materials science.

Lawyers are already citing fake, AI-generated cases and it's becoming a problem

Just in case you're wondering how society is dealing with AI.

This New Lens Converts Invisible Infrared Light into Visible Color

An atomic-scale metalens converts infrared into visible light in a single leap

Leading AI models sometimes refuse to shut down when ordered

Models trained to solve problems are now learning to survive—even if we tell them not to.

AI slop is way more common than you think. Here's what we know

The odds are you've seen it too.

Scientists Invented a Way to Store Data in Plastic Molecules and It Could Someday Replace Hard Drives

What if your next hard drive wasn’t a box, but a string of molecules? Synthetic polymers promises to revolutionize data storage.

Meet Cavorite X7: An aircraft that can hover like a helicopter and fly like a plane

This unusual hybrid aircraft has sliding panels on its wings that cover hidden electric fans.