homehome Home chatchat Notifications


Picture perfect: quick, efficient chip eliminates common flaws in amateur photographs

Your smartphone amateur photos could be instantly converted into professional-looking pictures at the touch of a button, thanks to a chip developed by MIT researchers. The chip, built by a team at MIT’s Microsystems Technology Laboratory can perform a number of tasks, including creating a more realistic environment or enhanced lighting in a shot without […]

Mihai Andrei
February 19, 2013 @ 7:28 am

share Share

Your smartphone amateur photos could be instantly converted into professional-looking pictures at the touch of a button, thanks to a chip developed by MIT researchers.

The chip, built by a team at MIT’s Microsystems Technology Laboratory can perform a number of tasks, including creating a more realistic environment or enhanced lighting in a shot without destroying the scene ambience; the technology could be easily implemented not only in cameras, but also in smartphones or tablets, making it easier for everyone to take that great pic you’ve always wanted.

photography

Usually, computational photography software applications are installed into cameras and smartphones; these systems consume lots of processing power, taking a longer time to run and requiring a considerable amount of knowledge from the user. But the chip developed by Rahul Rithe, a graduate student in MIT’s Department of Electrical Engineering and Computer Science takes an entirely different approach.

“We wanted to build a single chip that could perform multiple operations, consume significantly less power compared to doing the same job in software, and do it all in real time,” Rithe says.

Perhaps the most such notable task is known as High Dynamic Range (HDR) imaging. HDR is designed to compensate for limitations on the range of brightness that can be recorded by existing digital cameras, to capture photos as vivid as we see them with our own eyes. In order to do this, the camera takes three “low dynamic range” pictures: a normal one, an overexposed (too much light) and an underexposed (too little light). It then merges all of them, creating a single photo that features the entire range of brightness in the scene, Rithe says.

Software systems typically take a few seconds to perform this operation, while the chip, even in its initial stage, can do it in much less than a second; this makes it fast enough to even apply it to video, something previously impossible, while also requiring much less CPU power.

“Typically when taking pictures in a low-light situation, if we don’t use flash on the camera we get images that are pretty dark and noisy, and if we do use the flash we get bright images but with harsh lighting, and the ambience created by the natural lighting in the room is lost,” Rithe says.

The chip also removes unwanted noise, blurring out any undesired pixel with its surrounding neighbors, so that it matches those around it. This image is also done with traditional filters, but also blurred pixels at the edges of object, resulting in a less detailed image. The power savings offered by the chip are particularly impressive, says Matt Uyttendaele, also of Microsoft Research:

“All in all [it is] a nicely crafted component that can bring computational photography applications onto more energy-starved devices,” he says.

Source

share Share

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

Researchers Turned WiFi into a Medical Tool That Reads Your Pulse With Near Perfect Accuracy

Forget health trackers, the Wi-Fi in your living room may soon monitor your heartbeat.

This 3D printed circuit board that dissolves in water could finally solve our E-waste problem

This study is putting forward an alternative to our notoriously hard to recycle circuit boards.

A Spinning Drone Inspired by Maple Seeds Can Hover for 26 Minutes on a Single Motor

A 32-gram robot turns one of nature’s tricks into a long flight.

The 400-Year-Old, Million-Dollar Map That Put China at the Center of the World

In 1602, the Wanli Emperor of the Ming dynasty had a big task for his scholars: a map that would depict the entire world. The results was a monumental map that would forever change China’s understanding of its place in the world. Known as the Kunyu Wanguo Quantu (坤輿萬國全圖), or A Map of the Myriad […]

Living Tattoos Could Transform Buildings Into Air-Cleaning, Self-Healing Organisms

Microbial inks may soon give buildings the power to breathe, heal, and fight pollution.

Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

His genome held strange secrets: a turbocharged alcohol gene, rewired brain chemistry, and a slow-burn caffeine receptor.

The World’s Most "Useless" Inventions (That Are Actually Pretty Useful)

Every year, the Ig Nobel Prize is awarded to ten lucky winners. To qualify, you need to publish research in a peer-reviewed journal that is considered "improbable": studies that make people laugh and think at the same time.

This Bionic Knee Plugs Into Your Bones and Nerves, and Feels Just Like A Real Body Part

No straps, no sockets: MIT team created a true bionic knee and successfully tested it on humans.

Swarms of tiny robots could go up your nose, melt the mucus and clean your sinuses

The "search-and-destroy” microrobot system can chemically shred the resident bacterial biofilm.