homehome Home chatchat Notifications


Picture perfect: quick, efficient chip eliminates common flaws in amateur photographs

Your smartphone amateur photos could be instantly converted into professional-looking pictures at the touch of a button, thanks to a chip developed by MIT researchers. The chip, built by a team at MIT’s Microsystems Technology Laboratory can perform a number of tasks, including creating a more realistic environment or enhanced lighting in a shot without […]

Mihai Andrei
February 19, 2013 @ 7:28 am

share Share

Your smartphone amateur photos could be instantly converted into professional-looking pictures at the touch of a button, thanks to a chip developed by MIT researchers.

The chip, built by a team at MIT’s Microsystems Technology Laboratory can perform a number of tasks, including creating a more realistic environment or enhanced lighting in a shot without destroying the scene ambience; the technology could be easily implemented not only in cameras, but also in smartphones or tablets, making it easier for everyone to take that great pic you’ve always wanted.

photography

Usually, computational photography software applications are installed into cameras and smartphones; these systems consume lots of processing power, taking a longer time to run and requiring a considerable amount of knowledge from the user. But the chip developed by Rahul Rithe, a graduate student in MIT’s Department of Electrical Engineering and Computer Science takes an entirely different approach.

“We wanted to build a single chip that could perform multiple operations, consume significantly less power compared to doing the same job in software, and do it all in real time,” Rithe says.

Perhaps the most such notable task is known as High Dynamic Range (HDR) imaging. HDR is designed to compensate for limitations on the range of brightness that can be recorded by existing digital cameras, to capture photos as vivid as we see them with our own eyes. In order to do this, the camera takes three “low dynamic range” pictures: a normal one, an overexposed (too much light) and an underexposed (too little light). It then merges all of them, creating a single photo that features the entire range of brightness in the scene, Rithe says.

Software systems typically take a few seconds to perform this operation, while the chip, even in its initial stage, can do it in much less than a second; this makes it fast enough to even apply it to video, something previously impossible, while also requiring much less CPU power.

“Typically when taking pictures in a low-light situation, if we don’t use flash on the camera we get images that are pretty dark and noisy, and if we do use the flash we get bright images but with harsh lighting, and the ambience created by the natural lighting in the room is lost,” Rithe says.

The chip also removes unwanted noise, blurring out any undesired pixel with its surrounding neighbors, so that it matches those around it. This image is also done with traditional filters, but also blurred pixels at the edges of object, resulting in a less detailed image. The power savings offered by the chip are particularly impressive, says Matt Uyttendaele, also of Microsoft Research:

“All in all [it is] a nicely crafted component that can bring computational photography applications onto more energy-starved devices,” he says.

Source

share Share

Swarms of tiny robots could go up your nose, melt the mucus and clean your sinuses

The "search-and-destroy” microrobot system can chemically shred the resident bacterial biofilm.

Researchers just got a group of bacteria to produce Paracetamol from plastic

What if the empty water bottle in your recycling bin could one day relieve your headache?

Korean researchers used carbon nanotubes to build a motor that's five times lighter

Scientists just gave the electric motor a sci-fi upgrade.

China's New Mosquito Drone Could Probably Slip Through Windows and Spy Undetected

If the military is happy to show this, what other things are they covertly working on?

Scientists Detect Light Traversing the Entire Human Head—Opening a Window to the Brain’s Deepest Regions

Researchers are challenging the limits of optical brain imaging.

Stanford's New Rice-Sized Device Destroys Clots Where Other Treatments Fail

Forget brute force—Stanford engineers are using finesse to tackle deadly clots.

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

People still make the funniest memes but AI is catching up fast.