homehome Home chatchat Notifications


Genetic-scissor enzyme eliminates HIV completely in mice trials

A new gene-snipping enzyme was successful in removing strands of HIV genetic material in mice trials. If the enzyme can prove its reliability in human trials it might revolutionize how we fight the virus forever.

Alexandru Micu
February 26, 2016 @ 2:51 pm

share Share

A new gene-snipping enzyme was successful in removing strands of HIV genetic material in mice trials. If the enzyme can prove its reliability in human trials it might revolutionize how we fight the virus forever.

HIV is no longer the death sentence it once was.

Through modern antiretroviral therapy, the virus can be kept at bay and patients have a fighting chance against it. But antiretroviral treatments are more of a band-aid than a cure to HIV: they are expensive, increase drug resistance in patients and can lead to a host of adverse reactions. To top it all off, because the virus can stay hidden in reservoirs throughout the body, the disease can continue to progress if the treatment is discontinued.

HIV infected cell (virus in yellow.)
Image credits go to flikr used NIAID

A research team from Germany thinks that they have found the answer: they have created a substance that they hope will finally allow us to create an affordable and efficient treatment for the virus. Dubbed Brec1, the enzyme can cut strands of viral DNA out of infected cells’ genetic code and preventing more of the virus from spawning.

The team successfully tested Brec1 on mice and their results make them confident that their enzyme can be used in clinical practice. If Brec1 can be adapted to cut HIV’s genetic material out of a patient’s cells and leave everything else undisturbed, the technique would allow physicians to finally produce an effective cure for the virus.

Brec1 was obtained using a genetic engineering technique known as directed evolution, which mimics the natural evolution processes of proteins. In a way, this process can be likened to animal husbandry; starting with the genetic information for a particular gene, they subjected it to iterative rounds of mutation, selected the ones closest to what they needed, and then used those to restart the cycle of mutation.

This way they ended up with an enzyme programmed to recognize and cut DNA on either side of the virus’ characteristic genetic sequences — an impressive feat, considering that HIV often mutates, making its signature hard to determine. The researchers identified a well-conserved sequence in the viral genetic make-up and tested how well the enzyme could cut out that sequence in bacteria, HIV-positive patients and mice infected with the human form of HIV.

After a few tweaks, Brec1 was successful in removing the information and then patching up the strands of genetic material after removal of the sequence. Examined 21 weeks later, cells treated with the enzyme showed no signs of HIV.

There have been previous attempts to create something similar to Brec1. Previous gene-snipping enzymes such as CRISPR or TALENS were effective in clearing out viral genetic material but didn’t result in a reliable cure — they also had a nasty habit of making accidental cuts elsewhere in the genome.

The debate around these enzymes has shown us that people aren’t all that thrilled of methods that alter our DNA. It’s what makes us what we are, and people are wary of the consequences of altering it. Antiretroviral methods, for all their shortcomings, don’t make people nearly as nervous.

But if Brec1 proves to be reliable — even better, infallible — in human trials as it was in this study, it’s likely that it will come at the forefront in our search for an HIV cure.

Though there are a few more questions that the team doesn’t have an answer to yet — like what will the enzyme do in cells infected with more than one strand of HIV — they plan to test Brec1 in humans in the near future.

The full paper, titled “Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity” has been published online in the journal Nature and is available here.

share Share

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.