homehome Home chatchat Notifications


Glowing DNA origami used to recreate Van Gogh's 'Starry Night'

The end result is a perfect example of what can happen when art meets science.

Tyler MacDonald
July 13, 2016 @ 8:02 pm

share Share

Image credit Ashwin Gopinath/Caltech

Image credit Ashwin Gopinath/Caltech

In a unique study that intertwines science and art, researchers from the California Institute of Technology (Caltech) used a technique called DNA origami to recreate the famous “The Starry Night” painting created by artist Vincent Van Gogh.

Caltech scientist Paul Rothemund created the DNA origami technique 10 years ago to fold and manipulate a long strand of DNA into any shape, acting as a scaffold that can be used to organize components on the nanoscale.

Since its initial creation, Rothenmund and his team have refined the DNA origami technique into what it is today, using electron-beam lithography to engrave binding sites that mirror the origami’s shape. The new study is the first example of their enhancements of the technique, exhibiting its ability to put fluorescent molecules into tiny light sources, a process that Rothenmund compares to screwing light bulbs into lamps.

In the study, the lamps are phototonic crystal cavities (PCCs), microscopic defects within a honeycomb of holes that are designed to resonate at a specific wavelength of light. The team aligned the PCCs into a checkerboard pattern, altering the glowing intensity of each one to create the piece of art

“A fluorescent molecule tuned to the same color as a PCC actually glows more brightly inside the cavity, but the strength of this coupling effect depends strongly on the molecule’s position within the cavity,” said Ashwin Gopinath, a senior postdoctoral scholar in bioengineering at Caltech and lead author of the study. “A few tens of nanometers is the difference between the molecule glowing brightly, or not at all.”

In addition to creating art, DNA origami has the potential to influence numerous fields of research including nanoscale computer construction and drug delivery. As of now, scientists are working to improve the longevity of the light emitters.

Journal Reference: Engineering and mapping nanocavity emission via precision placement of DNA origami. 11 July 2016. 10.1038/nature18287

share Share

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Scientists Rediscover a Lost Piece of Female Anatomy That May Play a Crucial Role in Fertility

Scientists reexamine a forgotten structure near the ovary and discover surprising functions

This Tiny 3D Printed Material is as Strong as Steel but as Light as Styrofoam

When 3D printing is combined with machine learning, magic happens at the nano scale.

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.

The World's Oldest Known Ant Is A 113-Million-Year-Old Hell Ant with Scythe Jaws

A remarkable find for ant history was made, not in the field but in a drawer.