homehome Home chatchat Notifications


Muscle-driven tiny biobots can walk on command

Rashid Bashir, the head of bioengineering at the University of Illinois at Urbana-Champaign, is one of the pioneers leading a new field of robotics which deals with bio-bots. These tiny robots, less than a centimeter in size, combine biological and mechanical components to meet a certain purpose. Recently, Bashir and his team demonstrated a bio-bot […]

Tibi Puiu
July 2, 2014 @ 8:16 am

share Share

Photo:  University of Illinois

Photo: University of Illinois

Rashid Bashir, the head of bioengineering at the University of Illinois at Urbana-Champaign, is one of the pioneers leading a new field of robotics which deals
with bio-bots. These tiny robots, less than a centimeter in size, combine biological and mechanical components to meet a certain purpose. Recently, Bashir and his team demonstrated a bio-bot that’s powered by muscle cells and controlled with electrical pulses, giving researchers unprecedented command over their function.

Biological machines are making their first baby slides

Previously, the team demonstrated bio-bots powered by beating heart cells from rats. Unfortunately, heart cells introduce a lot of limitations because the cells constantly contract. Desirably, you want full control over your bio-bots, including an on-off switch.

The latest version uses a strip of skeletal muscle cells, backed by 3-D printed hydrogel structure. Together, they form a bio-bot similar to the muscle-tendon-bone complex found in nature, which can be activated by electrical impulses. This gives the researchers a simple way to control the bio-bots and opens the possibilities for customize bio-bots for specific applications.

“Skeletal muscles cells are very attractive because you can pace them using external signals,” Bashir said. “For example, you would use skeletal muscle when designing a device that you wanted to start functioning when it senses a chemical or when it received a certain signal. To us, it’s part of a design toolbox. We want to have different options that could be used by engineers to design these things.”

The video below shows how the muscle-driven bot works and behaves. To speed it up, the researchers only had to adjust the frequency of the electric pulses. A higher frequency causes the muscle to contract faster, thus speeding up the bio-bot’s progress.

These bio-bots might not seem like very much, but they’re the first in a new generation of biological machines that could aid in drug delivery, surgical robotics, ‘smart’ implants, or mobile environmental analyzers, among countless other applications. According to the team involved, future versions will integrate neurons so
the bio-bots can be steered in different directions with light or chemical gradients.

“This work represents an important first step in the development and control of biological machines that can be stimulated, trained, or programmed to do work,” said said graduate student Caroline Cvetkovic, co-first author of the paper.

share Share

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

We can still easily get AI to say all sorts of dangerous things

Jailbreaking an AI is still an easy task.

A small, portable test could revolutionize how we diagnose Alzheimer's

A passive EEG scan could spot memory loss before symptoms begin to show.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

This Bizarre Deep Sea Fish Uses a Tooth-Covered Forehead Club to Grip Mates During Sex

Scientists studying a strange deep sea fish uncovered the first true teeth outside the jaw.

Humans made wild animals smaller and domestic animals bigger. But not all of them

Why are goats and sheep so different?

Daddy longlegs have two more eyes they've been hiding from us

The eyes are relics form their evolutionary past.

Could AI and venom help us fight antibiotic resistance?

Scientists used AI to mine animal venom for potent new antibiotics.