homehome Home chatchat Notifications


Scientists create advanced biological transducer

Researchers at  the Technion-Israel Institute of Technology have devised an advanced biological transducer capable of manipulating genetic information and using the output as new input for sequential computations. Their findings serve as a new step forward for current efforts that might one day serve to create new biotech possibilities like individual gene therapy and cloning. In […]

Tibi Puiu
May 27, 2013 @ 5:16 am

share Share

Microprocessor with DNA (illustration). Scientists have developed and constructed an advanced biological transducer, a computing machine capable of manipulating genetic codes, and using the output as new input for subsequent computations (Credit: © Giovanni Cancemi / Fotolia)

Microprocessor with DNA (illustration). Scientists have developed and constructed an advanced biological transducer, a computing machine capable of manipulating genetic codes, and using the output as new input for subsequent computations (Credit: © Giovanni Cancemi / Fotolia)

Researchers at  the Technion-Israel Institute of Technology have devised an advanced biological transducer capable of manipulating genetic information and using the output as new input for sequential computations. Their findings serve as a new step forward for current efforts that might one day serve to create new biotech possibilities like individual gene therapy and cloning.

In a sense, all biological beings are walking, breathing computers – biomolecular computers. Each of the countless molecules that comprise our body communicate with one another in a logical manner that can be described and predicted. The input is a molecule that undergoes specific, programmed changes, following a specific set of rules (software) and the output of this chemical computation process is another well defined molecule.

Synthetic biomolecular computer are of great interest to scientists because they offer the possibility of actively manipulating biological systems and even living organisms. The fact that no interface is required makes them extremely appealing, since everything including “hardware”, “software” and information (input and output) are actually molecules that interact with one another in a cascade of programmable chemical events.

“Our results show a novel, synthetic designed computing machine that computes iteratively and produces biologically relevant results,” says lead researcher Prof. Ehud Keinan of the Technion Schulich Faculty of Chemistry. “In addition to enhanced computation power, this DNA-based transducer offers multiple benefits, including the ability to read and transform genetic information, miniaturization to the molecular scale, and the aptitude to produce computational results that interact directly with living organisms.”

The transducer could be used on genetic material to evaluate and detect specific sequences, and to alter and algorithmically process genetic code. Similar devices, says Prof. Keinan, could be applied for other computational problems. Strides in this direction have become ever fruitful, actually. In 2011 researches from the Weizmann Institute of Science in Rehovot, Israel, developed a biomolecular computer that could autonomously sense many different types of molecules simultaneously. Just a few months ago, the first working biological transistor was unveiled by Stanford researchers, allowing computers to function inside living cells, something we’ve been waiting for many years.

“All biological systems, and even entire living organisms, are natural molecular computers. Every one of us is a biomolecular computer, that is, a machine in which all components are molecules “talking” to one another in a logical manner. The hardware and software are complex biological molecules that activate one another to carry out some predetermined chemical tasks. The input is a molecule that undergoes specific, programmed changes, following a specific set of rules (software) and the output of this chemical computation process is another well defined molecule.”

The Israeli researchers’ findings  were reported in the journal Chemistry & Biology (Cell Press). [source]

share Share

Scientists uncover anti-aging "glue" that naturally repairs damaged DNA

Researchers have newly found a very important function for a well-known enzyme.

New Nanoparticle Vaccine Clears Pancreatic Cancer in Over Half of Preclinical Models

The pancreatic cancer vaccine seems to work so well it's even surprising its creators

Why Bats Don’t Get Cancer—And What That Could Mean for Us

Bats can live up to 40 years without developing cancer. Scientists now know why.

This Star-Shaped Pill Stomach Could Transform Schizophrenia Treatment

A once-weekly oral capsule offers new hope for patients who struggle with daily medication.

Outdoor physical activity is better than indoor for your brain

Let the kids run outside.

This anti-aging drug extends life as effectively as restricting calories

For centuries, humans have searched for ways to extend life. Alchemists never found the philosopher’s stone, but scientists have consistently shown that a longer life can be attained by eating less – at least in certain lab animals. But can we find a way to live longer while still enjoying our food? Compounds that mimic […]

Stanford's New Rice-Sized Device Destroys Clots Where Other Treatments Fail

Forget brute force—Stanford engineers are using finesse to tackle deadly clots.

Coffee Could Help You Live Longer — But Only If You Have it Black

Drinking plain coffee may reduce the risk of death — unless you sweeten it.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.