homehome Home chatchat Notifications


Why we need sleep-- a molecular answer

An explanation for why we feel tired.

Elena Motivans
June 13, 2018 @ 8:02 pm

share Share

It’s funny, although we spend about a third of our lives doing it, we don’t know exactly why we need to sleep. There are a number of different theories—that we sleep to conserve energy, for brain plasticity, or for evolutionary reasons. Whatever the true purpose of sleep may be, researchers are delving deeper into the molecular reasons behind why we have the desire to go to sleep, and, in the process, could shed light on the purpose of sleep as well.

Qinghua Liu and colleagues studied the molecular need for sleep by developing a special type of mutant mouse. The mutant genotype was called Sleepy, like Snow White’s dwarf, and had a single mutation in the Sik3 gene. These mice had a much higher need to sleep although they slept a lot. Their brains showed a ton of phosphorylation, similar to those in sleep-deprived mice. The mutant protein in Sleepy mice phosphorylates at a greater rate.

“To study the molecular basis of sleep need, we devised a novel strategy of comparing phosphorylation in the brains of the sleep-deprived normal mice and Sleepy mutant mice. In Sleepy mice, a single nucleotide mutation of the salt-induced kinase 3 (Sik3) gene, a member of the AMP-activated protein kinase family, results in constitutively high sleep need and chronic hypersomnia. Whereas sleep deprivation increases wake time, Sleepy mutation decreases wake time; yet both increase sleep need. Thus, these mice are two opposite models of increased sleep need. We hypothesize that cross-comparison of these two models will allow us to zero in on the specific phosphorylation changes associated with sleep need by filtering out non-specific effects of prolonged sleep, wake, and stress, which can never be achieved by either model alone,” said Liu to ZME Science.

Image credits: Public Domain Photos.

Phosphorylation entails the attachment of a phosphoryl group to a molecule. It is an important regulatory mechanism in living organisms that is usually reversible. Phosphorylation and dephosphorylation function as “on” and “off” switches for a variety of different enzymes and receptors.

By comparing Sleepy and sleep-deprived mice, the researchers were able to identify 80 synaptic proteins that were phosphorylated due to a lack of sleep and named them Sleep-Need-Index-Phosphoproteins (SNIPPs). Comparing these two mouse types filtered out confounding effects and they could see what really changed on a molecular basis. High phosphorylation levels in the brain increased the need for sleep and sleeping lowered phosphorylation levels.

“A holy grail of sleep research is to identify the actual molecular factor or factors involved in sleep. We found that the phosphorylation of SNIPPs increased along with sleep need and dissipated, or dephosphorylated, throughout the brain during sleep.  Previous studies suggested a close link between sleep need and synaptic plasticity (the strengthening and weakening of synaptic connections between neurons that is linked to thinking and learning). Intriguingly, the majority of SNIPPs are synaptic proteins, including many regulators of synaptic plasticity. Thus, we propose that SNIPPs constitute the molecular interface between synaptic plasticity and regulation of sleep need, or in lay terms, between thinking and sleepiness.
The phosphorylation/dephosphorylation cycle of SNIPPs may be an important way for the brain to reset itself every night, restoring both synaptic and sleep-wake balance to maximize clear thinking,” explained Liu to ZME Science.

Synapse phosphorylation seems to be a sign that you need sleep. These results are interesting because they match up with the synaptic homeostasis hypothesis, which proposes that sleep allows synapses to recover from their daily activity and keep everything going stably. When you’re awake memories are encoded and synapses fire, while during sleep memories are consolidated and synapses are brought back to homeostasis by scaling back excitatory synapses.

These findings add to our knowledge about sleep and provide concrete targets for drugs that can treat sleep disorders.

Journal reference: Liu et al. 2018. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature.

share Share

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.

British archaeologists find ancient coin horde "wrapped like a pasty"

Archaeologists discover 11th-century coin hoard, shedding light on a turbulent era.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.