homehome Home chatchat Notifications


Tiny neuromicroscope can see inside a moving animal's brain

A team of neuroscientists from Stanford University have managed to create a remarkably tiny device capable of monitoring brain activity in a rodent or other small animals. The device can be manufactured extremely cost-effective and might prove to be an invaluable tool for researchers of the new decade. Mice have always been the lab subjects […]

Tibi Puiu
September 15, 2011 @ 9:27 am

share Share

A team of neuroscientists from Stanford University have managed to create a remarkably tiny device capable of monitoring brain activity in a rodent or other small animals. The device can be manufactured extremely cost-effective and might prove to be an invaluable tool for researchers of the new decade.

A fluorescence microscope of tiny proportions - it weights only 2 grams! Credit: Dan Stober, Stanford News Service

A fluorescence microscope of tiny proportions - it weights only 2 grams! Credit: Dan Stober, Stanford News Service

Mice have always been the lab subjects of choice, and besides running around mazes for cheesy treats, rodents have now a new reason to rejoice. I mean, what mouse wouldn’t love one of these beauts wrapped around its head? The tiny microscope, weighing only 2 grams, is capable of monitoring up to 200 individual brain cells as the subjects moves around its environment. That’s actually more than a very expensive lab-sized equipment can rend, which requires the subject not to move.

The device, in principle, works by detecting fluorescent light, often used in biological research to mark different cells. Due to its tiny size and weight it can be easily strapped on a mouse’s head and used to accurately determine its brain pattern. Mice could be drugged and thus researchers will be able to see at a cerebral level how it interacts with the subject, or better understand what regions of the brain are more active when a subject is performing a particular task. Applications are numerous.

The cost? Well, the development cost for the prototype is figured at $50,000, however future models could drop in price extremely. First of all, all its components are already mass-produced everywhere on the mobile market, especially its core component, a complementary metal-oxide-semiconductor (CMOS) sensor, which can be found in most modern cell phone’s camera.

“The massive volume of the cell-phone market is driving costs down while not sacrificing performance,” says Aydogan Ozcan, professor of electrical and biomedical engineering at the University of California, Los Angeles. “Scientists are realizing that with cost-effective compact architecture, they can have components that a decade ago would cost thousands of dollars, if you could find them.”

The team of researchers, lead by Mark Schnitzer, a neuroscientist at Stanford University, got the idea to create this device after they understood they need to manufacture their own microscope to study how the brain directs movement. In the process, they managed to create a highly feasible and lucrative device, which quite possible might become highly commercial appealling in the future. Schnitzer and colleagues have already established a small start-up with this in mind.

“The advancement in being able to make a fluorescent scope this compact is really significant,” says Daniel Fletcher, a bioengineer at the University of California, Berkeley, who was not involved in the research. “For the animal to be able to carry the whole microscope along with it opens a lot more possibilities in studying behavior.

The study was published in this week’s issue of Nature Methods.
via

share Share

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

Science Just Debunked the 'Guns Don’t Kill People' Argument Again. This Time, It's Kids

Guns are the leading cause of death of kids and teens.

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

The amphibian blueprint for regeneration may already be written in our own DNA.

Drinking Sugar May Be Far Worse for You Than Eating It, Scientists Say

Liquid sugars like soda and juice sharply raise diabetes risk — solid sugars don't.

Muscle bros love their cold plunges. Science says they don't really work (for gains)

The cold plunge may not be helping those gains you work so hard for.

Revolutionary single-dose cholesterol treatment could reduce levels by up to 69%

If confirmed, this could be useful for billilons of people.