homehome Home chatchat Notifications


A sea-snail's venom could rival opioids in pain relief capability

Its venom is so powerful it can kill pain! Whoa.

Alexandru Micu
February 22, 2017 @ 6:46 pm

share Share

University of Utah researchers have identified a compound that could offer an alternative to opioids. Sourced from the venom of a small marine snail Conus regius, it blocks pain by targeting a non-opioid pathway in the brain.

Image credits James St. John / Flickr.

Opioids are very good at blocking pain, making them invaluable for medical applications. But they’re also very good at being addictive, which is a big problem. The CDC reports that some 91 people die from opioid overdose every day in the US alone and they always come back for more.

An alternative to opioids

So an alternative painkiller, one that doesn’t rely on the same brain structures as opioids but has the same punch, is needed. An alternative that the Conus regius, a small cone snail native to the Caribbean Sea, is poised to offer — this predatory critter’s venom, used to paralyze and kill prey, shows promise as a powerful painkiller.

“Nature has evolved molecules that are extremely sophisticated and can have unexpected applications,” begins Baldomera Olivera, Ph.D., professor in biology at the University of Utah.

“We were interested in using venoms to understand different pathways in the nervous system.”

The paper describes a compound isolated from the snail’s venom, called RglA, which acts through a different pathway than that targeted by opioid drugs. Rat studies have shown that its analog RglA4 can block α9α10 nicotinic acetylcholine pain receptors, effectively shutting down this pain pathway. Not only that, but the effect lasts for a long time, even after the substance has been cleared from the rat’s system (which took about 4 hours.) This would suggest that RglA4 has effects that go beyond numbing the sensation of pain — such as a regenerative effect on the nervous system.

“We found that the compound was still working 72 hours after the injection, still preventing pain,” said J. Michael McIntosh, M.D., professor of psychiatry at the University of Utah Health Sciences.

“What is particularly exciting about these results is the aspect of prevention,” he added. “Once chronic pain has developed, it is difficult to treat. This compound offers a potential new pathway to prevent pain from developing in the first place and offer a new therapy to patients who have run out of options.”

Rodent trials

To check if the substance would work on humans, the team took RglA and created 20 analogs of the compound. In essence, they took the bit that fits into the receptors, and put together slightly different configurations of it to see which one worked best. The analog RgIA4 was the one who bound the strongest to the human receptors.

To see how effective it would be as a painkiller, the team administered RglA4 to rodents who had previously been treated with a chemotherapy drug that induces extreme cold sensitivity and touch hypersensitivity. The team also set up two control groups — one which group was treated but didn’t receive RglA4, and one who was genetically modified to lack α9α10 receptors.

“Interactions that are not normally painful, like sheets rubbing against the body or pants against the leg, becomes painful,” said McIntosh.

The rodents who received RglA4 and the genetically altered control group didn’t show any signs of pain, but the other control group did.

“RgIA4 works by an entirely new pathway, which opens the door for new opportunities to treat pain,” McIntosh added.

“We feel that drugs that work by this pathway may reduce burden of opioid use.”

The full paper “Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain” has been published online in the journal PNAS.

share Share

Golden Dome Could Cost A Jaw-Dropping $3.6 Trillion. That's More Than Triple The Entire F-35 Program or 100 Times the Manhattan Project

Can America really afford the Golden Dome?

AI Tool Reveals Signs Of Consciousness In Comatose Patients Days Before Doctors Can Detect It

AI tool tracks minute facial movements to detect consciousness in patients previously thought unresponsive.

Teflon Diets, Zebra Cows, and Pizza-Loving Lizards: The 2025 Ig Nobel Prizes Celebrate Weird Science

Science finds humor and insight in the strangest places — from zebra cows to pizza-eating lizards.

Pet sharks have become cool, but is owning them ethical?

When Laurie was a kid, she had recurrent nightmares that featured her getting eaten by a shark. Decades later, Laurie goes to sleep next to them (or at least in the same house). She’s the proud owner of two epaulette sharks (Hemiscyllium ocellatum) in her 1,135-liter (300-gallon) tank: bottom-dwelling spotted sharks up to 0.6 meters […]

Gold, Jade, and a 16-Ton Coffin: The Lost Prince of China’s Terracotta Army May Be Found

A recently discovered hidden coffin in the terracotta army may finally confirm a 2,000-year-old legend.

1% of People Never Have Sex and Genetics Might Explain Why

A study of more than 400,000 people found 1% had never had sex – which was linked to a range of genetic, environmental and other factors.

Researchers Say Humans Are In the Midst of an Evolutionary Shift Like Never Before

Humans are evolving faster through culture than through biology.

Archaeologists Found A Rare 30,000-Year-Old Toolkit That Once Belonged To A Stone Age Hunter

An ancient pouch of stone tools brings us face-to-face with one Gravettian hunter.

Scientists Crack the Secret Behind Jackson Pollock’s Vivid Blue in His Most Famous Drip Painting

Chemistry reveals the true origins of a color that electrified modern art.

China Now Uses 80% Artificial Sand. Here's Why That's A Bigger Deal Than It Sounds

No need to disturb water bodies for sand. We can manufacture it using rocks or mining waste — China is already doing it.