homehome Home chatchat Notifications


A sea-snail's venom could rival opioids in pain relief capability

Its venom is so powerful it can kill pain! Whoa.

Alexandru Micu
February 22, 2017 @ 6:46 pm

share Share

University of Utah researchers have identified a compound that could offer an alternative to opioids. Sourced from the venom of a small marine snail Conus regius, it blocks pain by targeting a non-opioid pathway in the brain.

Image credits James St. John / Flickr.

Opioids are very good at blocking pain, making them invaluable for medical applications. But they’re also very good at being addictive, which is a big problem. The CDC reports that some 91 people die from opioid overdose every day in the US alone and they always come back for more.

An alternative to opioids

So an alternative painkiller, one that doesn’t rely on the same brain structures as opioids but has the same punch, is needed. An alternative that the Conus regius, a small cone snail native to the Caribbean Sea, is poised to offer — this predatory critter’s venom, used to paralyze and kill prey, shows promise as a powerful painkiller.

“Nature has evolved molecules that are extremely sophisticated and can have unexpected applications,” begins Baldomera Olivera, Ph.D., professor in biology at the University of Utah.

“We were interested in using venoms to understand different pathways in the nervous system.”

The paper describes a compound isolated from the snail’s venom, called RglA, which acts through a different pathway than that targeted by opioid drugs. Rat studies have shown that its analog RglA4 can block α9α10 nicotinic acetylcholine pain receptors, effectively shutting down this pain pathway. Not only that, but the effect lasts for a long time, even after the substance has been cleared from the rat’s system (which took about 4 hours.) This would suggest that RglA4 has effects that go beyond numbing the sensation of pain — such as a regenerative effect on the nervous system.

“We found that the compound was still working 72 hours after the injection, still preventing pain,” said J. Michael McIntosh, M.D., professor of psychiatry at the University of Utah Health Sciences.

“What is particularly exciting about these results is the aspect of prevention,” he added. “Once chronic pain has developed, it is difficult to treat. This compound offers a potential new pathway to prevent pain from developing in the first place and offer a new therapy to patients who have run out of options.”

Rodent trials

To check if the substance would work on humans, the team took RglA and created 20 analogs of the compound. In essence, they took the bit that fits into the receptors, and put together slightly different configurations of it to see which one worked best. The analog RgIA4 was the one who bound the strongest to the human receptors.

To see how effective it would be as a painkiller, the team administered RglA4 to rodents who had previously been treated with a chemotherapy drug that induces extreme cold sensitivity and touch hypersensitivity. The team also set up two control groups — one which group was treated but didn’t receive RglA4, and one who was genetically modified to lack α9α10 receptors.

“Interactions that are not normally painful, like sheets rubbing against the body or pants against the leg, becomes painful,” said McIntosh.

The rodents who received RglA4 and the genetically altered control group didn’t show any signs of pain, but the other control group did.

“RgIA4 works by an entirely new pathway, which opens the door for new opportunities to treat pain,” McIntosh added.

“We feel that drugs that work by this pathway may reduce burden of opioid use.”

The full paper “Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain” has been published online in the journal PNAS.

share Share

Archaeologists May Have Found Odysseus’ Sanctuary on Ithaca

A new discovery ties myth to place, revealing centuries of cult worship and civic ritual.

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.