homehome Home chatchat Notifications


Simple seaweed could be used to heal human wounds with bio-ink

Seaweed keeps surprising us with even further virtues

Fermin Koop
April 10, 2021 @ 9:48 pm

share Share

Throughout history, societies have enjoyed the nutritional and medical virtues of seaweed. But a group of scientists found another interesting use for algae: healing wounds in humans through bioprinting.

Seaweed keeps on surprising us with further virtues
Image credit: Flickr / Peter Castleton

When we have small wounds on our skin or muscles, they usually heal by themselves. But in deeper wounds repair is more difficult. These sorts of issues often require more serious treatments, and in very extreme cases, may even need an amputation or a transplant if healing is not complete. This is when technology such as bioprinting enters the stage.

Bioprinting means using materials or inks made from biological sources such as seaweed gels or printed with biological ingredients such as human skin cells. These bio-inks can be combined and printed to create structures that can grow new tissue in the desired place or shape. They can be controlled chemically at the molecular level.

Researchers from the ARC Centre of Excellence for Electromaterial Science (ACES) and the University of Wollongong have been working on one particular type of bio-ink from an Australian green seaweed — a seaweed with a molecular structure similar to that in human connective tissue. The ink belongs to a group of molecules know as ulvan.

Marine algae are nature’s most abundant plant source of sulfated polysaccharides (complex glycan sugars) – such as fucans in brown algae (Phaeophyta), carrageenans in red algae (Rhodophyta), and ulvans in green algae (Chlorophyta). These gel-like glycans are large molecules with biological properties that carry many health benefits. Ulvan has a long list of biological properties including antibacterial, anti-inflammatory, and anti-coagulant, which has made it especially interesting to researchers. Its molecular signature can trigger functions in human cells such as attachment, growth and production of other molecules such as collagen. This means that bio-inks with ulvan could be used for wound healing and tissue regeneration.

In a new paper, ACES Director Professor Gordon Wallace and his team described the potential of such a bio-ink with ulvan. The presence of it leads to the proliferation of cells involved in wound healing, they argued. Ulvan also helps to regulate the function of cells in producing key biomolecules used during wound healing.

“Wound healing occurs in a 3D environment involving a number of cell types and biomolecules, so the use of 3D bioprinting to create scaffolds for wound healing has attracted much attention,” Wallace said in a statement. “Ulvan acts as molecular reinforcement in 3D printed scaffolds, a key feature in preventing structure contraction.”

Together with bioinks that create molecular architecture, the researchers at ACES are targeting the fabrication of 3D scaffolds for skin tissue culture. This aims to combine bioinks and biomaterials through 3D bioprinting into structures that deliver the desired outcomes of reconstructed skin. Advances in printing engineering have made structural architecture of artificial skin tissue possible.

“It has been so exciting to begin the journey of unlocking molecules from seaweed and delivering them to new heights in partnership with researchers in biomaterials,” Pia Winberg, co-author said in a statement. “Particularly when the molecules that we have found from a unique species of Australian green seaweed are uncannily similar in structure and function to the molecules that exists in human skin.”

The study was published in the journal Biomaterials Science.

share Share

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

Your breath can tell a lot more about you that you thought.

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

Science Just Debunked the 'Guns Don’t Kill People' Argument Again. This Time, It's Kids

Guns are the leading cause of death of kids and teens.

This Self-Assembling Living Worm Tower Might Be the Most Bizarre Escape Machine

The worm tower behaves like a superorganism.

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

The amphibian blueprint for regeneration may already be written in our own DNA.