homehome Home chatchat Notifications


New dental treatment may finally replace horrible root canals

This is the medical breakthrough people were rooting for all along.

Tibi Puiu
December 5, 2023 @ 9:33 pm

share Share

illustration of tooth regeneration
Credit: DALL-E 3 AI-generated illustration.,
Key takeaways:
  • đŸŠ· Researchers discover resolvins can regenerate tooth tissue, potentially replacing invasive root canals.
  • đŸ§Ș Resolvin E1 shows promise in regenerating live pulp in teeth with early decay, but it’s less effective on dead tissue.
  • 🌐 Beyond dentistry, resolvins could significantly impact broader regenerative medicine.

Many people imagined the 21st century would involve flying cars, spacecraft traveling to distant stars, and pain-free dentistry. Well, at least we’re now getting closer to achieving the latter part. In a new study, researchers have discovered a potential alternative to the dreaded root canal treatment.

This new approach involves using molecules known as resolvins to regenerate damaged tooth tissue. These are naturally occurring substances that fight excess inflammation due to disease. If this treatment is proven effective in formal dental practice, it could spare patients, including anxious children, from the unpleasant experience of extensive dental drilling and root canals.

Is this the future of dentistry?

A tooth is made up of several layers: the outer hard enamel, the underlying dentin, and the innermost pulp, which houses vital blood vessels and nerves. Damage to the tooth, such as cavities or cracks, can inflame and infect the pulp, leading to severe pain.

Currently, root canal therapy (RCT) is the standard treatment for such infections. It involves removing the infected tissue and replacing it with a biocompatible material. However, this process is not perfect as it can weaken the tooth, increasing the risk of future fractures.

“Root canal therapy (RCT) is effective, but it does have some problems since you are removing significant portions of dentin, and the tooth dries out leading to a greater risk of fracture down the road. Our goal is to come up with a method for regenerating the pulp, instead of filling the root canal with inert material,” says the lead author Dr. Thomas Van Dyke, Vice President at the Center for Clinical and Translational Research at the Forsyth Institute.

Resolvin E1 (RvE1) and similar molecules, part of a group called Specialized Pro-resolving Mediators (SPMs), have previously shown promise in controlling inflammation caused by infections. When applied to live, infected dental pulp in mice, RvE1 effectively regenerated the tissue.

The study, conducted on mice, indicates that while RvE1 can regenerate live pulp with early stages of tooth decay, it’s less effective on extremely infected or dead pulp. It slows infection and reduces inflammation but doesn’t regenerate dead tissue. Patients who come late to the dentist might ultimately not be spared from root canals. However, while RvE1 couldn’t regenerate severely infected and necrotic pulp, it effectively slowed infection rates and treated inflammation. This means it could prevent more severe complications, like abscesses, in such cases.

Further research is necessary to determine the effectiveness and safety of RvE1 in human applications. Nonetheless, this breakthrough offers a glimpse into a future where painful dental procedures like root canals could become a thing of the past, replaced by treatments that regenerate and heal.

Elsewhere, other scientists are working on revamping dentistry. Chinese scientists at Zhejiang University and Xiamen University developed a special gel that can help tooth enamel repair itself, replacing fillings.

Interestingly, the implications of this study extend beyond dentistry. Dr. Van Dyke points out that since RvE1 promotes stem cell formation capable of differentiating into various tissue types, its potential in broader regenerative medicine is immense.

“Because the application of RvE1 to dental pulp promotes the formation of the type of stem cells that can differentiate into dentin (tooth), bone, cartilage or fat, this technology has huge potential for the field of regenerative medicine beyond the tissues in the teeth. It could be used to grow bones in other parts of the body, for instance,” he said.

The findings appeared in the Journal of Dental Research.

share Share

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.