homehome Home chatchat Notifications


Predicting pandemic outbreaks by looking at air traffic

The world is getting smaller by the day, as fixed geographical distances become easier and more accessible for the common folk to travel. What this means is that a lot of things change as well, including the day diseases are carrier and spread throughout the world. Only a century ago, the number one mean of […]

Tibi Puiu
December 13, 2013 @ 10:32 am

share Share

Airport map. (c) Dirk Brockmann

Airport map. (c) Dirk Brockmann

The world is getting smaller by the day, as fixed geographical distances become easier and more accessible for the common folk to travel. What this means is that a lot of things change as well, including the day diseases are carrier and spread throughout the world. Only a century ago, the number one mean of predicting and estimating the origin of a pandemic was to first look at the geographical distances between isolated cases. In a world where Berlin to San Francisco can be reached just as easily as Berlin to London or even some other neighboring German city, it’s becoming rather clear that we need a new way to look at things.

Modeling a pandemic

Researchers at Northwestern Institute on Complex Systems (NICO) have developed a mathematical model that effectively demonstrates the way diseases spread in an increasingly connected world. The first step was deciding that conventional geographic distances are no longer the key variable but must be replaced with “effective distances.”  Then, a series of questions needs to be answered by the model which interests scientists like: where did the new disease originate? Where are new cases to be expected? When are they expected? And how many people will catch the disease?

Imagine a new pandemic arising in one isolated region, only to spread from airport to airport throughout the world. Globalization comes with this major risk, so new tools are required that can not only pinpoint the origin of the disease but also accurately forecast how it can spread, thus providing the authorities with valuable information on how to contain a pandemic.

From airport to airport

For their work, the researchers showed that effective distances can be computed from the traffic intensities in the worldwide air transportation network.

“If the flow of passengers from point A to point B is large, the effective distance is small and vice versa,” the authors explain. “The only thing we had to do was to find the right mathematical formula for this.”

Using their model, the scientists managed to turn chaotic and seemingly unstructured events into simple models whose effects can be predicted. As such, their model for past, real-case pandemics like SARS in 2003, or influenza H1N1 in 2009 produced a geographical infection pattern that follows real data. ]

“In the future, we hope our approach can substantially improve existing, state-of-the-art models for disease spread,” the authors said.

“We believe our theory also will help to better understand other important contagion phenomena, such as the spread of computer viruses, information and fads, or contagion phenomena in social networks,” Helbing added.

Read more about their work in the paper published in the journal Science.

 

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes