homehome Home chatchat Notifications


Newly discovered 'sleep node' in the brain puts you to sleep without sedatives

Neuroscientists at University of Buffalo have identified a sleep-promoting circuit inside the brainstem or the primitive part of the brain, whose activity appears to be both necessary and sufficient to produce deep sleep. This is only the second ‘sleep node’ in the mammalian brain that was identified to serve this function. To demonstrate the sleep […]

Steve Murray
September 19, 2014 @ 3:49 pm

share Share

sing designer genes, researchers at UB and Harvard were able to 'turn on' specific neurons in the brainstem that result in deep sleep.  Image: Dreamstime

sing designer genes, researchers at UB and Harvard were able to ‘turn on’ specific neurons in the brainstem that result in deep sleep. Image: Dreamstime

Neuroscientists at University of Buffalo have identified a sleep-promoting circuit inside the brainstem or the primitive part of the brain, whose activity appears to be both necessary and sufficient to produce deep sleep. This is only the second ‘sleep node’ in the mammalian brain that was identified to serve this function. To demonstrate the sleep node’s function, the researchers used molecular tools that activate neurons in this region of the brain and found the test animals quickly fell into deep sleep. Thus, the research highlights an alternate and novel therapy for treating sleep disorders like insomnia without using sedatives.

Where the Zzz comes from

The brain stem is the posterior area of the brain that attaches to the spinal cord. Here information is sent back and forth between the cerebrum or cerebellum and the body. It’s also called the primitive part of the brain because  it was the first brain structure to evolve, and is responsible for our basic vital functions like  breathing, blood pressure, heart rate and body temperature.

“The close association of a sleep center with other regions that are critical for life highlights the evolutionary importance of sleep in the brain,” says Caroline E. Bass, assistant professor of Pharmacology and Toxicology in the UB School of Medicine and Biomedical Sciences and a co-author on the paper.

The team found that nearly half of the brain’s sleep-promoting activity originates from the parafacial zone (PZ) in the brainstem. It is here that they identified a key type of neuron that produces a neurotransmitter called gamma-aminobutyric acid (GABA), which effectively puts your into a deep sleep state. To test their findings, the researchers introduced a ‘designer’ virus into the PZ that expressed a  receptor on GABA neurons only, without altering other brain functions. When the scientists turned on the GABA neurons in the PZ, the animals quickly fell into a deep sleep without the use of sedatives or sleep aids.

“These new molecular approaches allow unprecedented control over brain function at the cellular level,” says Christelle Ancelet, postdoctoral fellow at Harvard School of Medicine. “Before these tools were developed, we often used ‘electrical stimulation’ to activate a region, but the problem is that doing so stimulates everything the electrode touches and even surrounding areas it didn’t. It was a sledgehammer approach, when what we needed was a scalpel.”

It’s yet unclear how these newly identified neurons in the PZ region interact with other well known sleep and wake-promoting brain regions. The UB researchers plan on extensively studing this relationship and hope that their work might eventually render a novel type of medication for treating sleep disorders, as well as better and safer anesthetics.

“We are at a truly transformative point in neuroscience,” says Bass, “where the use of designer genes gives us unprecedented ability to control the brain. We can now answer fundamental questions of brain function, which have traditionally been beyond our reach, including the ‘why’ of sleep, one of the more enduring mysteries in the neurosciences.”

Findings were reported in the journal Nature Neuroscience.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes