homehome Home chatchat Notifications


New Jell-O-like printable electrodes could one day replace metals as electric interfaces

The new material could make medical implants longer-lasting and safe.

Fermin Koop
June 19, 2023 @ 9:59 pm

share Share

metal-free electrode
MIT engineers developed a metal-free, Jell-O-like material. Image credits: MIT.

Regardless of their form and purpose, nearly all electronic implants incorporate electrodes — small conductive components that attach to tissues to electrically stimulate muscles and nerves. Most electrodes found in pacemakers and cochlear implants are made from metal. However, the performance of these implants can deteriorate over time due to the interaction between the metal and biological tissue.

Now, a team of researchers at MIT has created a metal-free, Jell-O-like material that is as soft and tough as biological tissue but can conduct electricity just like metals.

The material can be incorporated into printable ink, which the team patterned into flexible electrodes. The researchers hope the new material could one day replace metals as gel-based electrodes.

“We believe that for the first time, we have a tough, robust, Jell-O-like electrode that can potentially replace metal to stimulate nerves and interface with the heart, brain, and other organs in the body,” Xuanhe Zhao, study author and professor of mechanical engineering and of civil and environmental engineering at MIT, said in a press statement.

A new type of metal-free electrode

Most polymers have insulating properties, meaning they do not readily allow the flow of electricity. However, there’s a small group of polymers that can facilitate the passage of electrons through their structure. In the 1970s, scientists discovered the first polymers with high electrical conductivity –- work that was later honored with a Nobel Prize.

More recently, researchers have been exploring the use of conductive polymers in the development of soft and metal-free electrodes for various applications. The objective is to create flexible yet resilient electrically conductive films and patches. This is primarily achieved by blending particles of conductive polymers with hydrogel, a type of soft and porous polymer.

Unfortunately, the materials produced thus far have faced challenges. They either lacked strength and became brittle or demonstrated inadequate electrical performance. In their new study, the team at MIT found they needed a new way to mix hydrogels and conductive polymers to enhance the electrical and mechanical properties of both.

Such mixtures produced gels made of randomly dispersed polymer particles. The team realized that to preserve the electrical and mechanical strengths of the polymer and the hydrogel, both ingredients should be mixed so that they slightly repel. In this state, each could then link its respective polymers to form microscopic strands while also mixing as a whole.

A new formula

The researchers made adjustments to the formulation, changing the consistency of the gel to be more ink-like. This ink was used as a material for 3D printing. They printed the ink onto films composed of pure hydrogel, creating patterns akin to traditional metal electrodes. “We can customize geometries and shapes,” first author Thao Zhou said in a statement.

Afterward, they implanted the 3D-printed gel electrodes, resembling Jell-O in texture, onto the hearts, sciatic nerves, and spinal cords of rats. Experiments showed the devices were stable during the two-month testing period, causing minimal inflammation or scarring in the surrounding tissues.

The electrodes also successfully transmitted electrical impulses from the heart to an external monitor. They were also able to deliver controlled pulses to the sciatic nerve and spinal cord, leading to the stimulation of motor activity in the associated muscles and limbs. The team expects the material could be used in patients’ recovery from heart surgery.

The researchers are now focused on enhancing the durability and performance of the gel material. Their aim is to extend its lifespan and optimize its capabilities. The gel could serve as a soft electrical interface, enabling seamless connections between organs and long-term implants. Potential applications include its integration with pacemakers and deep-brain stimulators.

The study was published in the journal Nature Materials.

share Share

This Chip Trains AI Using Only Light — And It’s a Game Changer

Forget electricity — this new AI chip from Penn learns using light.

Scientists Tracked Countless Outcomes of Spanking Children and Found Zero Benefits. On the Contrary, There Is Only Harm

Even in countries where it’s culturally acceptable, physical punishment leads to negative outcomes.

Humans are really bad at healing. But that also helped us survive

It's a quirk tied to our thick skin, sweat glands, and sparse body hair.

This ancient South American culture used ritual drugs to reinforce social hierarchy

High in the Peruvian Andes, archaeologists uncovered snuff tubes containing traces of hallucinogens.

This Scottish Field Could Be the World’s Oldest Football Pitch

A quiet Scottish pasture may upend everything we thought we knew about football’s birthplace.

Oldest Wine in the World Still in Liquid From Found Inside 2,000-Year-Old Roman Funeral Urn With Human Ashes

You wouldn't want to drink from this 2,000-year-old vintage though.

A Mysterious Warrior Society Buried 900 Artifacts on This Hill in Hungary 3,000 Years Ago

The artifacts may help archaeologists learn more about the chaotic transition from the Bronze Age to the Iron Age.

Ancient Chinese Poems Reveal Tragic Decline of Yangtze’s Endangered Porpoise

Researchers used over 700 ancient Chinese poems to trace 1,400 years of ecological change

Scientists Have Taken the First Ever Photos of Atoms Interacting in Free Space

The new quantum microscope shows particles behaving exactly as predicted by theory.

Finland Just Banned Smartphones in Schools

Do you agree with this approach?