homehome Home chatchat Notifications


Never before seen brain activity in deep coma detected

Coma patients, be it inflicted from trauma or initiated by doctors to preserve bodily functions, have their brain activity regularly monitored using electroencephalography (EEG). When in a deep coma the brain activity is described by a flat-pattern signal- basically minimal to no response, one of the limits that nearly prompts  establishing brain death. A group […]

Tibi Puiu
September 25, 2013 @ 8:58 am

share Share

Coma patients, be it inflicted from trauma or initiated by doctors to preserve bodily functions, have their brain activity regularly monitored using electroencephalography (EEG). When in a deep coma the brain activity is described by a flat-pattern signal- basically minimal to no response, one of the limits that nearly prompts  establishing brain death. A group of physicians at University of Montreal, however, have discovered an up until now never before seen type of brain activity that kicks in after a patient’s EEG shows an isoelectric (“flat line”) EEG.

The discovery was first spurred by the findings of Dr. Bogdan Florea who was caring for a human patient in an extreme deep hypoxic (deprived of oxygen) coma under powerful anti-epileptic medication, typically used to control seizures. Instead of just a flatline, though, Florea also observed some unusual signals – anything that wasn’t flat was basically weird at this point. So Florea contacted the University of Montreal team and explained his peculiar situation.

Flat line and Nu-complex signals (credit: Daniel Kroeger et al./PLoS ONE)

Flat line and Nu-complex signals (credit: Daniel Kroeger et al./PLoS ONE)

The Montreal researchers found, after analyzing the patient’s records, “ that there was cerebral activity, unknown until now, in the patient’s brain,” said Dr. Florin Amzica. To test whether or not this was a measuring glitch of some sort, Amzica and team performed an experiment. The team recreated the initial patient’s coma state in cats (the model animal for neurological studies) by drugging them with a higher dose of isoflurane anesthetic than normal. This effectively placed the cats in a deep coma and the EEG showed the expected flat (isoelectric) EEG line. Things were all normal until then. However, after a while strong oscillations were observed.

When pinpointing their origin, the researchers found the signal’s origin was in the hippocampus, the part of the brain responsible for memory and learning processes. The researchers concluded that the observed EEG waves, or what they called “Nu-complexes,” were the same as those observed in the human patient.

Besides its peculiar nature, the finding might prove to be extremely important. For one, there are many cases in which doctors intentionally induce certain patients into coma to protect their bodies and brain. This may be technically faulty in practice. A deep coma, based on the experiment on cats, might be better suited since it preserves a certain brain activity.

“Indeed, an organ or muscle that remains inactive for a long time eventually atrophies. It is plausible that the same applies to a brain kept for an extended period in a state corresponding to a flat EEG,” says Professor Amzica.

“An inactive brain coming out of a prolonged coma may be in worse shape than a brain that has had minimal activity. Research on the effects of extreme deep coma during which the hippocampus is active is absolutely vital for the benefit of patients.”

“As these functions fade at the onset of unconsciousness, the orchestrating powers are relinquished to more basic structures such as the thalamus (in the case of sleep) or the limbic system [per the current data in the experiment],” the researchers said in the paper. “When these structures are released from neocortical influence, they begin to pursue activity patterns on their own and proceed to impose these patterns on other brain regions including the neocortex.”

Findings were reported in the journal PLoS ONE.

[NOW READ] How long can a person remain conscious after being decapitated

share Share

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

Science Just Debunked the 'Guns Don’t Kill People' Argument Again. This Time, It's Kids

Guns are the leading cause of death of kids and teens.

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

The amphibian blueprint for regeneration may already be written in our own DNA.

Drinking Sugar May Be Far Worse for You Than Eating It, Scientists Say

Liquid sugars like soda and juice sharply raise diabetes risk — solid sugars don't.

Muscle bros love their cold plunges. Science says they don't really work (for gains)

The cold plunge may not be helping those gains you work so hard for.

Revolutionary single-dose cholesterol treatment could reduce levels by up to 69%

If confirmed, this could be useful for billilons of people.

Your Brain Uses Only 5% More Energy Whether You’re Actively Thinking or Not. So, What Causes Mental Fatigue?

Mental effort barely increases brain energy use.

3D-Printed Pen With Magnetic Ink Can Detect Parkinson’s From Handwriting

This pen traces hand tremors to diagnose Parkinson's.

Losing Just 12 Pounds in Your 40s Could Add Years to Your Life

It’s not about crash diets or miracle cures. It's about a balanced lifestyle.