homehome Home chatchat Notifications


Three ways gold nanotubes are helping beat cancer

British researchers have demonstrated three ways gold nanotubes can be used against cancer: 1) high resolution in-vivo imaging; 2) drug delivery vehicles; 3) agents that destroy cancer itself. Their work shouldn't be viewed as yet "another" hack that seeks to eradicate cancer. We need to be more realistic than this. Instead, the findings have the potential to be a great measure that both diagnoses and treats cancer at the same time, complementing conventional surgery and, hopefully, avoiding the need for chemotherapy.

Tibi Puiu
February 18, 2015 @ 6:55 am

share Share

British researchers have demonstrated three ways gold nanotubes can be used against cancer: 1) high resolution in-vivo imaging; 2) drug delivery vehicles; 3) agents that destroy cancer itself. Their work shouldn’t be viewed as yet “another” hack that seeks to eradicate cancer. We need to be more realistic than this. Instead, the findings have the potential to be a great measure that both diagnoses and treats cancer at the same time, complementing conventional surgery and, hopefully, avoiding the need for chemotherapy.

Pulsed near infrared light (shown in red) is shone onto a tumor (shown in white) that is encased in blood vessels. The tumor is imaged by multispectral optoacoustic tomography via the ultrasound emission (shown in blue) from the gold nanotubes. (credit: Jing Claussen/iThera Medical, Germany)

Pulsed near infrared light (shown in red) is shone onto a tumor (shown in white) that is encased in blood vessels. The tumor is imaged by multispectral optoacoustic tomography via the ultrasound emission (shown in blue) from the gold nanotubes. (credit: Jing Claussen/iThera Medical, Germany)

Gold nanotube schematic showing hollow interior (left) and transmission electron microscope image (right) (credit: Jeremy Freear/Advanced Functional Materials)

Gold nanotube schematic showing hollow interior (left) and transmission electron microscope image (right) (credit: Jeremy Freear/Advanced Functional Materials)

The scientists at the University of Leeds  made the first successful demonstration of the biomedical use of gold nanotubes in a mouse model of human cancer. They injected the gold nanotubes intravenously then shone a pulsed infrared laser beam. By adjusting the brightness of the laser pulse, the researchers were able to control whether the gold nanotubes were in imaging mode or cancer-destruction mode. In addition, beforehand, the researchers claim the nanotubes  can have their lengths adjusted in order to absorb a precise wavelength.

[SEE] How gold is made and how it got to our planet

In image-mode, the gold nanotubes absorbed the the energy from the laser pulse and generated  ultrasound. Using  multispectral optoacoustic tomography (MSOT), researchers then read the ultrasound waves and detected the gold nanotubes.

For cancer destruction, there were two options:

  • Use a stronger laser beam to rapidly raise the temperature in the vicinity of the nanotubes so that the temperature was high enough to destroy cancer cells.
  • Load the central hollow core of the nanotubes with a therapeutic payload.

Although gold is not particularly harmful to the body (unless you pass a certain threshold), the team coated the nanotubes with a  protective sodium polystyrenesulfonate (PSS) coating. Ultimately, the nanotubes are safely excreted from the body, after they meet their purpose.

“High recurrence rates of tumors after surgical removal remain a formidable challenge in cancer therapy. Gold nanotubes have the potential to enhance the efficacy of these conventional treatments by integrating diagnosis and therapy in one single system,” said  lead author Sunjie Ye, who is based in the School of Physics and Astronomy and the Leeds Institute for Biomedical and Clinical Sciences at the University of Leeds.

Findings appeared in Advanced Functional Materials

share Share

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.