homehome Home chatchat Notifications


Scientists grew a 'mini brain' in a dish that can make muscles twitch

The brain organoid was connected to a tiny spinal cord with surrounding muscle tissue.

Tibi Puiu
March 19, 2019 @ 3:44 pm

share Share

Credit: MRC Laboratory of Molecular Biology.

Researchers have grown a tiny brain in a dish that linked up to a mouse spinal cord and surrounding muscles. The pea-sized brain organoid sent signals to the spinal cord that caused the muscle tissue to contract, suggesting that a similar platform could be used to study motor neural diseases.

Brain in a dish

This is one of the most advanced stages of brain growth that scientists have achieved in the lab. It all started from human stem cells — basic cells that can become almost any type of cell in the body — which developed into a tiny blob. This blob resembles the brain of a 12-week human fetus in structure and variety of neurons. According to scientists at the Medical Research Council’s Laboratory of Molecular Biology in Cambridge, who led the research, the lab-grown brain organoid is made of few million neurons. For comparison, the adult human brain has up to 90 billion neurons.

Growing sophisticated tissue such as those in the human brain is rife with challenges. The biggest roadblock researchers face is supplying nutrients to the brain organoid once it matures past a certain critical phase. Previously, similar organoids would die because neurons in the center were cut off from their nutrient and oxygen supply. In the new research, British researchers cut the organoid into slices only half a millimeter thick, which they placed on a flat membrane in a nutrient-rich liquid. This configuration gave the organoid access to nutrients from below and oxygen from the air above, allowing it to develop for more than a year, reaching a greater degree of sophistication than previous efforts.

The researchers also added a one-millimeter-long spinal cord section, complete with its surrounding muscle tissue, taken from a mouse embryo to the brain organoid. The brain cells automatically linked up to the spinal cord and began sending electrical impulses that caused the muscles to twitch. The video below shows such a moment occurring.

In the future, a similar setup might be used by scientists in the field to study nervous systems and motor neuron diseases such as epilepsy and schizophrenia. Being able to answer very precise questions about what goes wrong in the context of psychiatric illness is an exciting prospect for many researchers in the field. But there is much work ahead before this can happen on a practical level.

“If getting to a full understanding of the brain is a mile, we have walked at least six inches,” Jeff Lichtman, the Jeremy R. Knowles Professor of Molecular and Cellular Biology at Harvard University, said in a statement. “You look at the actual structure of the brain or even an organoid and it’s just extraordinarily complicated. It’s much more complicated than anything humans have ever built. This is a little humbling.”

Elsewhere, at the University of Singapore, researchers have grown organoids that mimic the developing spinal cord, which can be used to investigate neurodegenerative diseases such as spinal muscular atrophy and amyotrophic lateral sclerosis.

The findings were described in the journal Nature Neuroscience

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes