homehome Home chatchat Notifications


Tweaking potassium in brain cells helps fight Huntington's disease

Approximately one in 20,000 Americans suffer from Huntington’s disease, a devastating neurodegenerative affliction that  gradually deprives patients of their ability to walk, speak, swallow, breathe and think clearly. Like other similar diseases, like Alzheimer’s, there isn’t any cure, but scientists at University of California, Los Angeles (UCLA) may have discovered a way to tackle it by […]

Tibi Puiu
March 31, 2014 @ 3:38 pm

share Share

Brain tissue from a mouse shows star-shaped astrocytes (green). Cells (blue) containing mutant protein (white) display lower levels of a potassium-regulating protein (red). Photo: UCLA

Brain tissue from a mouse shows star-shaped astrocytes (green). Cells (blue) containing mutant protein (white) display lower levels of a potassium-regulating protein (red). Photo: UCLA

Approximately one in 20,000 Americans suffer from Huntington’s disease, a devastating neurodegenerative affliction that  gradually deprives patients of their ability to walk, speak, swallow, breathe and think clearly. Like other similar diseases, like Alzheimer’s, there isn’t any cure, but scientists at University of California, Los Angeles (UCLA) may have discovered a way to tackle it by looking elsewhere than other researchers. Namely, by boosting the potassium intake ability of a specific cell in the brain, the UCLA researchers improved walking and prolonged survival in a mouse model of Huntington’s disease.

Huntington’s disease is passed from parent to child through a mutation in the huntingtin gene, namely a genetic defect on chromosome 4. The defect causes a part of DNA, called a CAG repeat, to occur many more times than it is supposed to. Normally, this section of DNA is repeated 10 to 28 times. But in persons with Huntington’s disease, it is repeated 36 to 120 times.  As the gene is passed down through families, the number of repeats tend to get larger. The larger the number of repeats, the greater your chance of developing symptoms at an earlier age. Therefore, as the disease is passed along in families, symptoms develop at younger and younger ages.

After onset, the disease gradually kills neurons causing the dreaded symptoms, while patients with aggressive cases can die in as little as 10 years. Most research has concentrated on neurons and their mechanics, looking on how these interact and how these genetic malfunctions cause Huntington’s. The UCLA researchers, however, took an alternate route and looked at what role astrocytes — large, star-shaped cells found in the brain and spinal cord — play in Huntington’s.

The stellar nebula in the brain

Artist impression of astrocytes. Photo: UCLA

Artist impression of astrocytes. Photo: UCLA

Astrocytes appear in almost equal number as neurons and enable the latter  to signal each other by maintaining an optimal chemical environment outside the cells. The scientists used two mouse models to explore whether astrocytes behave differently during Huntington’s disease: the first model studied an aggressive and early-onset type of Huntington’s; the second a slow-developing version.

In both models, astrocytes with the mutant gene showed a measurable drop in Kir4.1, a protein that allows the astrocyte to take in potassium through the cell membrane. This caused too much potassium to accumulate around the cell, disrupting the delicate chemical balance and causing neurons to grow oversensitive and fire too easily, disrupting nerve-cell function and ultimately the body’s ability to move properly. Ultimately this may be what causes the jerky motions common to Huntington’s disease.

To test if this hypothesis is correct, the researchers sought to find what would happen if they artificially increased Kir4.1 levels inside the astrocytes.  The results speak for themselves.

“Boosting Kir4.1 in the astrocytes improved the mice’s ability to walk properly,” said  Baljit Khakh, a UCLA professor of physiology and neurobiology. “We were surprised to see the length and width of the mouse’s stride return to more normal levels. This was an unexpected discovery.”
“Our work breaks new ground by showing that disrupting astrocyte function leads to the disruption of neuron function in a mouse model of Huntington’s disease,” said Michael Sofroniew, a UCLA professor of neurobiology. “Our findings suggest that therapeutic targets exist for the disorder beyond neurons.”
“We’re really excited that astrocytes can potentially be exploited for new drug treatments,” said Khakh. “Astrocyte dysfunction also may be involved in other neurological diseases beyond Huntington’s.”
Next, the researchers plan on exploring more of the astrocyte-neuron mechanisms in order to find out more how tweaking Kir4.1 levels alters neural networks. Findings appeared in Nature Neuroscience.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.