homehome Home chatchat Notifications


Scientists reverse damage by key gene involved in Alzheimer's Disease

The results astonishingly suggest that Alzheimer's effects on the brain could be reversed.

Tibi Puiu
April 11, 2018 @ 4:26 pm

share Share

Alzheimer’s Disease (AD) is a debilitating neurogenerative disease for which there is no cure. Among the several risk factors for AD, a certain gene called APOE4 seems to play a major role. Now, scientists have reported correcting this gene variant, erasing its harmful effects.

Brain

Credit: Pixabay.

The apolipoprotein (APOE) gene plays a very complex role in the development of Alzheimer’s. This gene comes in three variants: APOE2, E3, and E4. Everybody carries two of these three variants, with the most common variant being APOE3. Some people — about 15 percent of the general population — have APOE4, which increases the risk of AD by up to a factor of three. Those extremely unfortunate enough to have two copies of the gene are 12 times likelier to develop the neurodegenerative disorder.

In a new study, researchers at the Gladstone Institutes in San Francisco, CA, set out to find out what makes the E4 variant so dangerous.

The main role of the APOE gene is to code instructions for the production of a certain protein with the same name. When this protein is combined with fats, lipoproteins emerge, which help to transport and regulate levels of cholesterol throughout the bloodstream. The APOE proteins created by the E3 and E4 variants are very similar, with the two differing very little at only one point. However, even such a tiny difference could have important effects on the human body. For instance, the E4 variant may be causing APOE3 to lose some of its functions or it could be the case that APOE4 has some toxic effects.

In order to investigate how the variants might influence AD development, the researchers modeled the disease in human cells, monitoring the effects of APOE4 on human brain cells for the very first time. This, in and of itself, was already a huge step forward in AD research because more often than not work on animal models, such as experimental drugs, is not transferable to humans.

Can Alzheimer’s be reversed?

Researchers collected skin cells from Alzheimer’s patients with two APOE4 genes, as well as some from people with two APOE3 genes who didn’t have Alzheimer’s. Using stem cell technology, the skin cells were turned into induced pluripotent stem cells, which were, in turn, converted into human brain cells. When the neurons from the APOE3 and APOE4 donors were compared, the researchers found that the latter didn’t function as well as they should. Specifically, the proteins break down into the neurons, leading to higher levels of tau phosphorylation a marker for AD. Intriguingly, the “APOE4 increased [amyloid-beta] production in human, but not in mouse, neurons,” once again highlighting the potentially huge discrepancy in results between animal and human studies.

“There’s an important species difference in the effect of apoE4 on amyloid beta,” said Chengzhong Wang, first author of the new study published in Nature Medicine. “Increased amyloid beta production is not seen in mouse neurons and could potentially explain some of the discrepancies between mice and humans regarding drug efficacy. This will be very important information for future drug development.”

The authors of the new study conclude that the APOE4 protein has a “pathogenic conformation” — in other words, the protein’s structure has an abnormal form that prevents it from functioning properly. And it is this abnormality that leads to disease-causing complications.

The good news is that the researchers were able to reverse the damage by applying a class of compounds that turn APOE4 into APOE3. It’s thus reasonable to assume that it may be possible to treat brain cells with such structure-correcting molecules to restore neuron function. This may actually open up an effective treatment route to reverse the signs of Alzheimer’s, which today is impossible to do. In the future, the team plans on testing such a hypothesis in human patients.

“Treatment of APOE4-expressing neurons with a small-molecule structure corrector ameliorated the detrimental effects, thus showing that correcting the pathogenic conformation of APOE4 is a viable therapeutic approach for APOE4-related [Alzheimer’s disease],” the authors concluded.

share Share

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.

British archaeologists find ancient coin horde "wrapped like a pasty"

Archaeologists discover 11th-century coin hoard, shedding light on a turbulent era.