homehome Home chatchat Notifications


Scientists discover molecular trigger for itch

An itch is a sensation that causes the desire or reflex to scratch. Researchers have long tried to characterize itch, but in its typical annoying fashion, the sensation resisted any such attempts. For a very long time, the itch has been thought of as a low-level form of pain, but now, a new study conducted […]

Mihai Andrei
May 28, 2013 @ 5:55 am

share Share

An itch is a sensation that causes the desire or reflex to scratch. Researchers have long tried to characterize itch, but in its typical annoying fashion, the sensation resisted any such attempts. For a very long time, the itch has been thought of as a low-level form of pain, but now, a new study conducted on mice suggests that it is indeed a distinct sensation, with a dedicated neural circuit linking cells in the periphery of the body to the brain.

itch Neuroscientists Mark Hoon and Santosh Mishra of the National Institute of Dental and Craniofacial Research in Bethesda, Maryland, tried to find the exact molecule which triggers the sensation of itch by screening genes in sensory neurons that are activated by touch, heat, pain and itch. They found that one particular protein, called natriuretic polypeptide b, or Nppb, was expressed in only a subset of these neurons.

Mutant mice lacking this this protein, did not respond to itch-inducing compound – but interestingly enough, they didn’t respond to heat and pain. But what’s even more interesting is that when Nppb was injected into the mice, it send them into a scratching frenzy. This occurred both in the mutants and in control mice.

“Our research reveals the primary transmitter used by itch sensory neurons and confirms that itch is detected by specialized sensory neurons,” says Hoon.

According to Glenn Giesler, a neuroscientist at the University of Minnesota in Minneapolis, the result “explains problems in the literature and provides a very testable hypothesis for how itch works”.

Previous research suggested that gastrin-releasing peptide, or GRP, was the neurotransmitter behind itches, but as Hoon and Misha showed (almost beyond the shadow of a doubt) is that GRP is not the primary trigger, but is still involved in the process, and injecting GRP into mice lacking either Nppb or its receptor did produce strong scratching responses.

Furthermore, mice in which GRP receptors were inhibited did not engage in scratching behaviour, even with spinal-cord injection of Nppb. This seems to suggest that GRP-releasing neurons are downstream of Nppb in the transmission of the itch sensation.

“This model fits better with what everyone else is seeing,” says Sarah Ross, a neuroscientist at the University of Pittsburgh in Pennsylvania.

The neural pathways are similar, though not identical, to those in mice. It remains to be seen if Nppb plays the same role in humans, or if there is something different involved.

“Antihistamines work for a few forms of itch, but for the vast majority they do nothing,” he says. “This research introduces a brand new target for clinical treatment.”

Via Nature

share Share

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

A Popular Artificial Sweetener Could Be Making Cancer Treatments Less Effective

Sucralose may weaken immunotherapy by altering gut microbes and starving immune cells

Strength Training Unlocks Anti-Aging Molecules in Your Muscles

Here’s how resistance training can trigger your body’s built-in anti-aging switch.

This mRNA HIV Vaccine Produces the Virus-Fighting Antibodies That Have Eluded Researchers for 40 Years

New mRNA-based HIV vaccines spark hope with potent immune responses in first human trial

Aging Might Travel Through Your Blood and This Protein Is Behind It

Researchers identify a molecular “messenger” that spreads cellular aging between organs.

Older Adults Keep Their Brains up to Two Years 'Younger' Thanks to This Cognitive Health Program

Structured programs showed greater cognitive gains, but even modest lifestyle changes helped.

Optimists Are All the Same; Pessimists Are All Different

Researchers found the brain activity of optimists looked strikingly similar to that of other optimists.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

We Might Be Ingesting Thousands of Lung-Penetrating Microplastics Daily in Our Homes and Cars — 100x More Than Previously Estimated

Microscopic plastic particles are everywhere and there's more than we thought.