homehome Home chatchat Notifications


How the sperm's waggy tail enables the miracle of life

Human sperm has evolved a reinforced coating on its outer tail which enables it to penetrate thick fluid.

Tibi Puiu
March 20, 2019 @ 2:11 pm

share Share

Credit: Pixabay.

Out of the millions of sperm that embark on the perilous journey to fertilize the egg, only a dozen or so cells are able to fully penetrate the reproductive tract, crossing the cervical mucus. Out of all of them, a single cell is allowed to fertilize the egg — winner takes all. A new study reveals how these motile cells are able to swim through so many obstacles, showing that the tails of human sperm have a reinforced outer-layer that allows it to break through the cervical mucus barrier which can be 100 times more viscous than water.

And the winner is…

Researchers at the University of York performed a computer model of different sperm tails — or flagella — from two types of animals: those that fertilize inside the body, such as humans and other mammals, and those that fertilize outside the body by releasing sperm into the environment like the sea urchin. The model showed that the tails of human and sea urchin sperm share many characteristics with one important distinction — the sperm in mammals have a reinforcing outer layer that offers extra strength and stability.

When the researchers released a virtual sea urchin-like sperm to swim through a liquid that mimicked the viscosity of the cervical mucus, they found that the tails quickly buckled under the pressure. Meanwhile, human sperm convulsed violently in a low-viscosity liquid like water but swam in a powerful rhythmic wave in a thicker fluid.

“We still don’t fully understand how, but a sperm’s ability to swim could be associated with genetic integrity. Cervical mucus forms part of the process in the female body of ensuring only the best swimmers make it to the egg,” Dr. Hermes Gadêlha, from the Department of Mathematics at the University of York, said in a statement.

The researchers think that the sperm’s flagella adapted to swim through thicker fluids, although it is not clear which evolved first — the stronger sperm or the cervical mucus, or whether they co-evolved. The findings could lead to better screening methods such that only the sturdiest sperm is selected for in vitro fertilization (IVF) treatments.

“During the sperm selection process, IVF clinics don’t currently use a highly viscous liquid to test for the best sperm as until now it was not entirely clear whether this is important. Our study suggests that more clinical tests and research are needed to explore the impact of this element of the natural environment when selecting sperm for IVF treatments.”

There are still many mysteries surrounding sperm. For instance, scientists still don’t know how sperm is able to control its movement and make decisions, but future research might shed light on this.

“We know that, just like in our arms and legs, sperm have tiny muscles which allow their tails to bend— but nobody knows how this is orchestrated inside the tail, at the nanometric scale,” said Dr. Gadêlha.

“Sperm are an architype of self-organisation—movement seems to be happening automatically, perhaps because of a complex combination of many mechanisms at play.”

The findings appeared in the Journal of the Royal Society Interface.

share Share

Scientists Discover One of the Oldest Known Matrilineal Societies in Human History

The new study uncovered a 250-year lineage organized by maternal descent.

AI Could Help You Build a Virus. OpenAI Knows It — and It’s Worried

We should prepare ourselves for a society where amateurs can create garage bioweapons.

China's New Mosquito Drone Could Probably Slip Through Windows and Spy Undetected

If the military is happy to show this, what other things are they covertly working on?

This Colorful Galaxy Map Is So Detailed You Can See Stars Being Born

Astronomers unveil the most detailed portrait yet of a nearby spiral galaxy’s complex inner life

Paleontologists Discover "Goblin-Like" Predator Hidden in Fossil Collection

A raccoon-sized predator stalked dinosaur nests 76 million years ago.

Stunning 12-Ton Assyrian Relief Unearthed in Iraq Reveals Legendary King Alongside the Gods

The king was flanked by gods and mythical guardians.

Scientists uncover anti-aging "glue" that naturally repairs damaged DNA

Researchers have newly found a very important function for a well-known enzyme.

Your Brain Could Reveal a Deadly Heart Risk. AI Is Learning to Read the Signs

By studying brain scans this AI model was able to differentiate between types of strokes with high accuracy.

A NASA Spacecraft Just Spotted a Volcano on Mars Like We Have Never Seen Before

NASA's Mars Odyssey captures a surreal new image of Arsia Mons at sunrise

Why Bats Don’t Get Cancer—And What That Could Mean for Us

Bats can live up to 40 years without developing cancer. Scientists now know why.