homehome Home chatchat Notifications


Scientists grow functioning human muscles from skin cells

The new method doesn't rely on donor muscle tissue unlike previous methods.

Tibi Puiu
January 9, 2018 @ 6:28 pm

share Share

muscle

Credit: Pixabay.

In a novel research project, bioengineers at Duke University demonstrated how to grow functioning human muscles from induced pluripotent stem cells. It’s the first time scientists have shown that it’s possible to grow human muscles essentially starting from scratch, all by coaxing skin cells to generate stem cells, which ultimately turned into muscle tissue.

Previously, the same team grew functioning human muscle — the kind that contracts in response to a stimulus such as an electrical signal — in culture, starting with pea-sized globs of muscle, sourced from human volunteers.

While the previous attempts grew new muscle from native muscle, the present work is far more sophisticated since the resulting tissue doesn’t depend on donated muscle. What’s more, the ability to generate muscles starting from non-muscle tissue helps scientists grow far more of these cells. Bearing this in mind, the new technique will prove far more useful as far as genome editing and cellular therapies go. It also makes it possible to tailor custom treatments for rare muscle disorders such as muscular dystrophies or test substances for new drug discovery.

Skin to muscle

Researchers have grown the first functioning human muscle tissue from skin cells reprogrammed into stem cells. Credit: Duke University.

Researchers have grown the first functioning human muscle tissue from skin cells reprogrammed into stem cells. Credit: Duke University.

It all starts from human induced pluripotent stem cells (iPSCs), which are adult non-muscle tissues, such as skin or blood, that have been reprogrammed to revert to a primordial state. Just like any stem cells, iPSCs can then be programmed to differentiate into any kind of tissue. In our case, scientists flood the iPSCs with a signaling molecule called Pax7 which triggers muscle formation out of the cells.

“Starting with pluripotent stem cells that are not muscle cells, but can become all existing cells in our body, allows us to grow an unlimited number of myogenic progenitor cells,” explained Nenad Bursac, professor of biomedical engineering at Duke University. “These progenitor cells resemble adult muscle stem cells called ‘satellite cells’ that can theoretically grow an entire muscle starting from a single cell.”

It sounds easy enough when reading this but the truth is it took Bursac and colleagues years of trial and error before they got it just right. One important breakthrough that enabled cell proliferation into functioning skeletal muscle was the introduction of a unique cell culture conditions and 3-D matrix, rather than having to rely on the 2-D culture approaches that are typically used. This way, cells can grow and develop much faster and longer.

Once the cells reached a critical threshold, the scientists stopped the flow of Pax7 and started giving the cells the support and nourishment they needed to fully mature.

After two to four weeks of 3-D culture, the muscle cells aggregated into muscle fibers that can contract and react to electrical pulses and biochemical signals just like natural muscles would in response to neuronal inputs.

The lab-grown muscle fibers were put to the test when they were implanted into adult mice. Small ‘windows’ grafted on the backs of the mice allowed the researchers to observe how the muscles they’ve grown behaved inside the rodents. The muscles survived and functioned for at least three weeks, during which it progressively integrated with native tissue through vascularization.

The resulting muscle, unfortunately, is not nearly as strong as native muscle tissue nor that grown from muscle biopsies for that matter. It makes up for it, however, in versatility and the ability to grow many more cels from a smaller starting batch than other methods, such as the biopsy one. What’s more, the team’s new muscle seems capable of supplying a special reservoir of cells that muscles can use to regenerate themselves following injury or exercise — an important hallmark of natural muscle. Biopsied muscle tissue, in contrast, produces a far less richer reservoir.

“The prospect of studying rare diseases is especially exciting for us,” said Bursac. “When a child’s muscles are already withering away from something like Duchenne muscular dystrophy, it would not be ethical to take muscle samples from them and do further damage. But with this technique, we can just take a small sample of non-muscle tissue, like skin or blood, revert the obtained cells to a pluripotent state, and eventually grow an endless amount of functioning muscle fibers to test.”

Findings appeared in the journal Nature Communications

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics