homehome Home chatchat Notifications


How antibody drug conjugates are changing the game of precision oncology

ADCs target cancer cells with precision, offering a promising advance in minimizing treatment side effects.

Alexandra Gerea
April 11, 2024 @ 11:12 am

share Share

Antibody Drug Conjugates (ADCs) have emerged as a promising class of therapeutics in the fight against cancer, offering targeted delivery of cytotoxic payloads to tumor cells while sparing healthy tissues.

Nearly 25 years ago, the FDA approved the first ADCs for treating acute myeloid leukemia. Initially, these early approvals primarily focused on blood cancers. However, today, ADCs have become a formidable treatment option for solid tumors.

Safety is paramount, ensuring the well-being of patients and providing a secure environment in ADC production and administration. Neglecting the toxicity of ADCs and failing to handle them with care can pose serious risks to both patients and professionals involved in their production and administration. But first, what are ADCs exactly?

What are ADCs?

Illustration of how antibody-drug conjugates work. Credit: Bioconjugator/Wikimedia Commons.

ADCs are a class of targeted cancer therapies that combine the specificity of monoclonal antibodies with the potency of cytotoxic drugs. These drugs are designed to selectively bind to cancer cells, delivering a toxic payload directly to the tumor while sparing healthy tissues.

ADCs have shown promise in treating various types of cancer, offering improved efficacy and reduced side effects compared to traditional chemotherapy.

The Birth of Antibody Drug Conjugates

Early experiments in the 1960s laid the groundwork for using antibodies to deliver cytotoxic drugs to cancer cells. Key milestones, including the development of the first ADCs entering clinical trials in the 1990s, paved the way for subsequent research and innovation. 

The first practical application of Antibody Drug Conjugates (ADCs) was gemtuzumab ozogamicin, which received FDA approval in 2000 for the treatment of acute myeloid leukemia. By 2022, ADCs had expanded their usage and were being investigated for potential applications in other diseases.

Several ADCs have achieved remarkable success in clinical trials and have been approved for the treatment of various malignancies. Drugs such as Brentuximab Vedotin and Trastuzumab Emtansine have demonstrated impressive efficacy in Hodgkin lymphoma and HER2-positive breast cancer, respectively, improving patient outcomes and quality of life. 

Preclinical and Clinical Development

The journey of ADCs from bench to bedside begins with rigorous preclinical studies aimed at optimizing their design and efficacy. Researchers select target antigens overexpressed on cancer cells and explore various cytotoxic payloads to maximize therapeutic benefit. Additionally, the development of stable linkers capable of releasing the payload within the tumor microenvironment without causing systemic toxicity is of great importance.

The transition from preclinical development to clinical trials represents a critical phase in the validation of ADCs as viable cancer therapies. Phase I trials focus on establishing safety and determining the maximum tolerated dose in human subjects. Subsequent Phase II trials assess the efficacy of ADCs in specific cancer populations, while Phase III trials compare ADCs with standard treatments in large-scale studies.

However, challenges and setbacks, including off-target effects, resistance mechanisms, and manufacturing complexities, underscore the need for continued research and innovation in the field of ADC development.

Challenges and Limitations

The journey of ADC manufacturing is riddled with challenges, foremost among them being the delicate balance between efficacy and safety.

Challenges and setbacks include off-target effects, resistance mechanisms, and manufacturing complexities.

This therapy’s targeted approach hinges on the ADC’s ability to recognize and bind to specific antigens present on the surface of cancer cells. Upon binding, the ADC is internalized by the cancer cell, where the cytotoxic agent is released to induce cell death. However, this can be a double-edged sword.

ADCs are toxic because they are designed to deliver a potent cytotoxic (cell-killing) agent. While this precision reduces the impact on healthy cells compared to traditional chemotherapy, the cytotoxic agents can cause adverse effects if they detach before reaching the target cells or if there is off-target binding.

Moreover, the release of the cytotoxic payload within the body, even in targeted delivery, can lead to side effects due to the potent nature of these drugs. Managing this toxicity requires a delicate balancing act, necessitating careful dosing and monitoring to minimize harm to the patient.

Further challenges arise in the development and manufacturing of these drugs. Ensuring the safety of personnel and the environment requires strict adherence to rigorous manufacturing standards such as current good manufacturing practices (cGMPs).

Scalability further complicates matters. Manufacturers typically implement modular systems and innovative technologies to facilitate the transition from lab-scale to commercial production.

By tackling the manufacturing challenges head-on and safeguarding ADCs’ integrity with specialized, single-use solutions, researchers are set to revolutionize oncology treatment. This approach holds promising prospects for improving the outcomes for patients fighting cancer, heralding a new era of precision medicine in oncology.

share Share

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

We Know Sugar Is Bad for Your Teeth. What About Artificial Sweeteners?

You’ve heard it a thousand times: sugar is terrible for your teeth. It really is. But are artificial sweeteners actually any better? The short answer? Yes—artificial sweeteners don’t feed the bacteria that cause cavities. But here’s the twist: many of the sugar-free products they’re used in can still damage your teeth in a different way—through […]

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

Tooth loss is linked to cognitive decline, study in India shows

The connection between tooth loss and cognitive decline may surprise you.

Scientists Rediscover a Lost Piece of Female Anatomy That May Play a Crucial Role in Fertility

Scientists reexamine a forgotten structure near the ovary and discover surprising functions

Superbugs are the latest crisis in Sub-Saharan Africa

Researchers found an alarming rise in antibiotic-resistant infections among children.

Drug Regenerates Retina and Restores Vision in Blind Mice

A protein hidden in our eyes may be the reason we can't repair lost vison.

This Chewing Gum Can Destroy 95 Percent of Flu and Herpes Viruses

Viruses had enough fun in our mouths, it's time to wipe them out.

Here's why you should stop working out before bedtime

Even hours before bedtime, workouts can be a problem.