homehome Home chatchat Notifications


New artificial lenses mimic the natural qualities of the eye

Modern sight correction medical procedures often involve surgery where an artificial lens is implanted. The patient’s sight is significantly improved, however the quality of vision is far from that experienced with a healthy pair of eyes. That’s because current artificial lenses function more or less like those from a camera, a bit more advanced of […]

Tibi Puiu
November 14, 2012 @ 8:50 am

share Share

Modern sight correction medical procedures often involve surgery where an artificial lens is implanted. The patient’s sight is significantly improved, however the quality of vision is far from that experienced with a healthy pair of eyes. That’s because current artificial lenses function more or less like those from a camera, a bit more advanced of course. The eye is a lot more complicated, on the other hand. Recently a team of researchers have successfully constructed a lens that is closer to the human eye than any of its counterparts.

One of the GRIN lenses.

One of the GRIN lenses.

During high school optics, textbooks and teachers would often use the human eye as an allegory for a natural light bending lens. Then they would compare it to a camera, when discussing refraction – the bending of light in a particular direction when traveling through a new medium. Fact of the matter is, a camera’s lens is only comprised of only one or a few other layers. As light passes through the lens, it’s bent only at the surface of the lens, and then exits in a straight line. This is why artificial lens implants, while still improving sight considerably, aren’t that effective.

The eye, however, bends light continuously. To create an artificial lens with features closer to the natural qualities of the eye, scientists at Case Western University, the Rose-Hulman Institute of Technology, the U.S. Naval Research Laboratory, and Case Western spin-off company PolymerPlus made a single lens from hundreds of thousands of layered and laminated nanoscale polymer films. The technology is known as GRIN (gradient refractive index optics).

Each of these thousands of stacked films has slight different optical properties, which causes light to be incrementally bent by multiple degrees as it passes through the lens.

“As light passes from the front of the human eye lens to the back, light rays are refracted by varying degrees,” said Michael Ponting, president of PolymerPlus. “It’s a very efficient means of controlling the pathway of light without relying on complicated optics, and one that we attempted to mimic.”

Lenses currently employed by today’s technology and used to treat sight impairment conditions, like cataract, lack the ability to incrementally change the refraction of light, and thus fail to come close to the performances of the human eye.

“A copy of the human eye lens is a first step toward demonstrating the capabilities, eventual biocompatible and possibly deformable material systems necessary to improve the current technology used in optical implants,” says Ponting.

Since the technology also enables optical systems with fewer components, GRIN could be used not only as medical implants, but also in consumer and military products.

“Prototype and small batch fabrication facilities exist, and we’re working toward selecting early adoption applications for nanolayered GRIN technology in commercial devices,” says Ponting.

Findings were published in the journal Optics Express.The animation below describes the M-GRIN manufacturing process used to make the new lenses:

source

share Share

Drinking Coffee at Night Could Be Making You More Impulsive and Reckless

The implications are especially important for people who work overnight shifts.

A Century-Old Lung in a Jar Yields Clues to the Spanish Flu’s Lethal Surge

Scientists decode how the 1918 flu rapidly adapted to humans—much earlier than thought.

This Common Ingredient in Chocolate May Outperform Tamiflu Against the Flu In New Drug Combo

Researchers uncover a potent, resistance-proof flu treatment—starting with bacteria and ending in mice.

Why Are Some Doctors Pretending to Do CPR? You Should Know About 'Slow Code'

Although it sounds wrong, performative CPR is sometimes the most humane thing to do.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

A Popular Artificial Sweetener Could Be Making Cancer Treatments Less Effective

Sucralose may weaken immunotherapy by altering gut microbes and starving immune cells

Strength Training Unlocks Anti-Aging Molecules in Your Muscles

Here’s how resistance training can trigger your body’s built-in anti-aging switch.

This mRNA HIV Vaccine Produces the Virus-Fighting Antibodies That Have Eluded Researchers for 40 Years

New mRNA-based HIV vaccines spark hope with potent immune responses in first human trial

Aging Might Travel Through Your Blood and This Protein Is Behind It

Researchers identify a molecular “messenger” that spreads cellular aging between organs.

Older Adults Keep Their Brains up to Two Years 'Younger' Thanks to This Cognitive Health Program

Structured programs showed greater cognitive gains, but even modest lifestyle changes helped.