homehome Home chatchat Notifications


New STEM cell technology allows scientists to grow retinal nerve cells

Johns Hopkins researchers have discovered a method that allows them to coax stem cells to morph into retinal ganglion cells. This type of nerve cells reside in the retina and transmit visual input from the eyes to the brain. If these cells become damaged or die vision-loss conditions develop, such as glaucoma or multiple sclerosis.

Alexandru Micu
January 14, 2016 @ 6:11 pm

share Share

Johns Hopkins researchers have discovered a method that allows them to coax stem cells to morph into retinal ganglion cells. This type of nerve cells reside in the retina and transmit visual input from the eyes to the brain. If these cells become damaged or die vision-loss conditions develop, such as glaucoma or multiple sclerosis.

Fluorescence microscopy: Human retinal ganglion cells are shown at day 50.
Image via sciencedaily

“Our work could lead not only to a better understanding of the biology of the optic nerve, but also to a cell-based human model that could be used to discover drugs that stop or treat blinding conditions,” says Donald Zack, M.D., Ph.D., the Guerrieri Family Professor of Ophthalmology at the Johns Hopkins University School of Medicine and lead scientists of the study.

“And, eventually it could lead to the development of cell transplant therapies that restore vision in patients with glaucoma and MS.”

By using a genome editing tool called CRISPR-Cas9, the team grafted a new gene in human embryonic stem cells’ DNA. The gene determined the production of a fluorescent-red protein but would only express when another gene, BRN3B (POU4F2), also became active. Since BRN3B becomes active in mature retinal ganglion cells, once stem cells differentiated to this type they would glow bright red.

“By the 30th day of culture, there were obvious clumps of fluorescent cells visible under the microscope,” says lead author Valentin Sluch, Ph.D., a former student at Johns Hopkins and postdoctoral scholar at Novartis, a pharmaceutical company.

After picking them out under a microscope scientists employed a technique named fluorescence-activated cell sorting to separate the newly formed ganglion cells from the rest if the material. This left the team with a highly purified population of cells that showed the same biological and physical properties as retinal ganglion cells naturally produced by the body, Zack says.

“I was very excited when it first worked,” Sluch says. “I just jumped up from the microscope and ran [to get a colleague]. It seems we can now isolate the cells and study them in a pure culture, which is something that wasn’t possible before.”

Zack is now working with Peter Calabresi, M.D., professor of neurology and director of the Johns Hopkins Multiple Sclerosis Center to develop new treatments for glaucoma and MS based on this new technology.

“We really see this as just the beginning,” adds Zack. In follow-up studies using CRISPR, his lab is looking to find other genes that are important for ganglion cell survival and function. “We hope that these cells can eventually lead to new treatments for glaucoma and other forms of optic nerve disease.”

To use these cells to develop new treatments for MS, Zack is working with Peter Calabresi, M.D., professor of neurology and director of the Johns Hopkins Multiple Sclerosis Center.

The team also found that adding forskolin (a chemical that occurs naturally in plants) to the culture helped improve the cells’ odds of becoming retinal ganglion cells. They do caution that forskolin is not scientifically proven safe or effective for treatment or prevention of blindness or any other disorder however.

The full paper is available online in the journal Nature.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes