homehome Home chatchat Notifications


Resetting the immune system back 500 million years

Researchers at the Max Planck Institute of Immunobiology and Epigenetics (MPI-IE)  re-activated the expression of an ancient gene in mice. To their surprise, the gene in question which is dormant in all mammalian species caused the mice to develop  fish-like thymus. The thymus is an organ of paramount importance to the adaptive immune system, but in […]

Tibi Puiu
August 18, 2014 @ 12:26 pm

share Share

Researchers at the Max Planck Institute of Immunobiology and Epigenetics (MPI-IE)  re-activated the expression of an ancient gene in mice. To their surprise, the gene in question which is dormant in all mammalian species caused the mice to develop  fish-like thymus. The thymus is an organ of paramount importance to the adaptive immune system, but in this particular instance, the thymus produced not only T cells, but also served as a maturation site for B cells – a property normally seen only in the thymus of fish. So, what we’re seeing is a resetting of the immune system to a state similar to what it was like 500 million years ago, when the very first vertebrates began to emerge. By closely following how these gene works, the scientists hope to build a model that will explain how the thymus evolved during the past hundreds of millions of years.

An ancient immune system, today

T-cells are a type of white blood cell that circulate around our bodies, scanning for cellular abnormalities and infections, and are essential to human immunity. These are matured by the epithelial cells in the thymus, but genetically-wise it’s the FOX1 gene that triggers their development. FOX1’s evolutionary ancestor is FOX4, an ancient gene that lies dormant in most vertebrates except jawed fish, such as cat sharks and zebra fish.

The team led by Thomas Boehm, director at the MPI-IE and head of the department for developmental immunology, activated FOX4 in mice. When both FOX1 and FOX4 are simultaneously activated, the researchers found the mouse thymus exhibited properties similar to those found in a fish. Coupled with previous findings, the results suggest that that thymus as we know it today in most vertebrates evolved from and was prompted by the FOX4 gene.  Through  an evolutionary gene duplication FOX1 was born. Initially  both genes must have been active, until finally only FOXN1 was active in the thymus.

The normal mouse thymus (left) contains only a small fraction of B-cells (red). If the gene FOXN4 is activated, a fish-like thymus with many B-cells develops. Image: Max Planck

The normal mouse thymus (left) contains only a small fraction of B-cells (red). If the gene FOXN4 is activated, a fish-like thymus with many B-cells develops. Image: Max Planck

A surprising find was that not only T-cells developed in the thymus of the mice, but also B-cells. Mature B-cells are responsible for antibody production. In mammals, they normally do not mature in the thymus, but in other organs, such as the bone marrow.

Boehm says that it’s not yet clear whether the B-cell development is based on the migration of dedicated B-cell precursors to the thymus, or to maturation from a shared T/B progenitor in the thymus itself.  Nevertheless, it’s remarkable how the researchers have uncovered a particular evolutionary innovation that occurred in an extinct species. Retracting evolutionary steps in our collective ancestral background might provide insights we dare not dream of.

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics