homehome Home chatchat Notifications


Quadruple helix DNA proven to exist in human cells

Exactly 50 years ago, Cambridge researchers Watson and Crick published a monumental paper that for the first time described the intertwined double helix DNA structure which carries the fundamental genetic code for life. The discovery led to an explosion of advancements in the fields of genetics and health, but also in chemistry or computing. Now, researchers, […]

Tibi Puiu
January 21, 2013 @ 9:12 am

share Share

Exactly 50 years ago, Cambridge researchers Watson and Crick published a monumental paper that for the first time described the intertwined double helix DNA structure which carries the fundamental genetic code for life. The discovery led to an explosion of advancements in the fields of genetics and health, but also in chemistry or computing. Now, researchers, coincidentally or not from the same Cambridge University, have proven that a quadruple helix structure, first discovered some ten years ago, does in fact also exist in human cells.

Researchers have shown that four-stranded 'quadruple helix' DNA structures -- known as G-quadruplexes -- exist within the human genome. (Credit: Jean-Paul Rodriguez and Giulia Biffi)

Researchers have shown that four-stranded ‘quadruple helix’ DNA structures — known as G-quadruplexes — exist within the human genome. (Credit: Jean-Paul Rodriguez and Giulia Biffi)

These rather peculiar DNA structures are called G-quadruplexes, since they form in regions of DNA that are rich in the building block guanine. For over ten years, scientists have been able to replicate the quadruple helix in lab tubes, but only recently did they show that these can found in living human cells too, after they arrived at the end of their research stream from hypothetical model, to computer simulation to human cell identification.

In the new study, chemist Shankar Balasubramanian, grad student Giulia Biffi, and coworkers at Cambridge University developed antibodies that are highly specific for G-quadruplex binding.

Four strands of DNA – still human

The scientists generated antibody proteins, based on previous research, that detect and bind to areas in a human genome rich in quadruplex-structured DNA. Rather ingeniously, these proteins were also tagged  with a florescence marker so the emergence of the structures in the cell could be tracked and imaged, similar to how modern biopsy-bypass techniques employ florescence markers to image cancer cells.

While quadruplex DNA is found fairly consistently throughout the genome of human cells and their division cycles, a marked increase was shown when the fluorescent staining grew more intense during the ‘s-phase’ — the point in a cell cycle where DNA replicates before the cell divides.

With this new found proof, drugs that target quadruplexes with synthetic molecules that trap these DNA structures – consequently preventing cell division – might become effective against cancer proliferation.

We are seeing links between trapping the quadruplexes with molecules and the ability to stop cells dividing, which is hugely exciting,” said Professor Shankar Balasubramanian from the University of Cambridge’s Department of Chemistry and Cambridge Research Institute, whose group produced the research.

“The research indicates that quadruplexes are more likely to occur in genes of cells that are rapidly dividing, such as cancer cells. For us, it strongly supports a new paradigm to be investigated — using these four-stranded structures as targets for personalised treatments in the future.”

Findings were published in the journal Nature Chemistry.

 

share Share

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

Science Just Debunked the 'Guns Don’t Kill People' Argument Again. This Time, It's Kids

Guns are the leading cause of death of kids and teens.

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

The amphibian blueprint for regeneration may already be written in our own DNA.

Drinking Sugar May Be Far Worse for You Than Eating It, Scientists Say

Liquid sugars like soda and juice sharply raise diabetes risk — solid sugars don't.

Muscle bros love their cold plunges. Science says they don't really work (for gains)

The cold plunge may not be helping those gains you work so hard for.

Revolutionary single-dose cholesterol treatment could reduce levels by up to 69%

If confirmed, this could be useful for billilons of people.