homehome Home chatchat Notifications


New anti-baldness treatment may grow new hair using patient's own cells

Anti-baldness treatments available today work by stimulating hair follicle health or slow down hair loss. There is no available method that promotes the growth of new hair, however. You might have heard of hair transplants, but this typically involves transplanting hair from another area of the hair, like the back of the head, to the […]

Tibi Puiu
October 22, 2013 @ 5:52 am

share Share

Anti-baldness treatments available today work by stimulating hair follicle health or slow down hair loss. There is no available method that promotes the growth of new hair, however. You might have heard of hair transplants, but this typically involves transplanting hair from another area of the hair, like the back of the head, to the bald area of the head – no new hair. Of course, you can transplant hair from a donor, so essentially you could get new hair, but this doesn’t work for everyone. About 90% of women, for instance, are not strong candidates for hair transplantation surgery because of insufficient donor hair. A new method that grows new human hair from the patient’s own cells may solve many of the issues involving hair loss.

 For the first time, researchers have been able to take human dermal papilla cells (those inside the base of human hair follicles) and use them to create new hairs. Image: Claire Higgins/Christiano Lab at Columbia University Medical Center.

For the first time, researchers have been able to take human dermal papilla cells (those inside the base of human hair follicles) and use them to create new hairs. Image: Claire Higgins/Christiano Lab at Columbia University Medical Center.

The dermal papilla cells  are small, nipple-like extensions at the surface of the skin. On the hands and feet, these form what’s colloquially known as fingerprints. On the scalp, however, these cells  nourish all hair follicles and bring nutrients and oxygen to the lower layers of epidermal cells, thus playing a pivotal role in hair formation, growth and cycling.

When put in a tissue culture, human dermal papillae revert to basic skin cells – something that has hindered past research.  Angela M. Christiano, PhD, from Columbia University Medical Center (CUMC) and colleagues, however, tried their luck with mice, which are well known for their high hair transplant success rate. In rodents, unlike humans, the dermal paillae don’t revert back, possibly because the cells tend to form clumps in tissue culture that allows the papillae to interact and release signals that reprogram the skin to grow new follicles.

Growing new human hair on the back of rodents

The researchers decided to combine human cells in a rodent culture. Dermal papillae cells were harvested from seven human donors and cloned  in a tissue culture. After a few days, these were inserted on the back of mice. They found that new hair continued to grow  for at least six weeks in five out of  the seven tests, with DNA analysis confirming that the new hair follicles genetically matched the human donors.

“This suggested that if we cultured human papillae in such a way as to encourage them to aggregate the way rodent cells do spontaneously, it could create the conditions needed to induce hair growth in human skin,” says CUMC’s Claire A. Higgins, PhD, who was first author of the study.

“This approach has the potential to transform the medical treatment of hair loss,” says Dr. Christiano. “Current hair-loss medications tend to slow the loss of hair follicles or potentially stimulate the growth of existing hairs, but they do not create new hair follicles. Neither do conventional hair transplants, which relocate a set number of hairs from the back of the scalp to the front. Our method, in contrast, has the potential to actually grow new follicles using a patient’s own cells. This could greatly expand the utility of hair restoration surgery to women and to younger patients – now it is largely restricted to the treatment of male-pattern baldness in patients with stable disease.”

[RELATED] Gray hair reversal process discovery by scientists

More tests need to be made before clinical trials on human might commence. Still, the researchers feel very confident their method will work. Of important note is that the method might be used to promote new hair growth on burned skin as well.

“We also think that this study is an important step toward the goal of creating a replacement skin that contains hair follicles for use with, for example, burn patients,” adds Dr Jahoda.

Findings appeared in the journal Proceedings of the National Academy of Sciences (PNAS).

share Share

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

Science Just Debunked the 'Guns Don’t Kill People' Argument Again. This Time, It's Kids

Guns are the leading cause of death of kids and teens.

A Provocative Theory by NASA Scientists Asks: What If We Weren't the First Advanced Civilization on Earth?

The Silurian Hypothesis asks whether signs of truly ancient past civilizations would even be recognisable today.

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

The amphibian blueprint for regeneration may already be written in our own DNA.

Scientists Created an STD Fungus That Kills Malaria-Carrying Mosquitoes After Sex

Researchers engineer a fungus that kills mosquitoes during mating, halting malaria in its tracks

Drinking Sugar May Be Far Worse for You Than Eating It, Scientists Say

Liquid sugars like soda and juice sharply raise diabetes risk — solid sugars don't.