homehome Home chatchat Notifications


Flipping a single "molecular switch" makes an old mouse brain young

A single molecular switch can make the transition between the active, malleable brain of an adolescent and the mature, stable brain of an adult; yep, a single gene can turn us back to the childlike curiosity we exhibit as adolescents. Researchers have known for quite a while that adolescent brains are typically more malleable (or […]

Mihai Andrei
March 8, 2013 @ 7:47 am

share Share

A single molecular switch can make the transition between the active, malleable brain of an adolescent and the mature, stable brain of an adult; yep, a single gene can turn us back to the childlike curiosity we exhibit as adolescents.

A neuron cultured for the study. Via Yale University.

A neuron cultured for the study. Via Yale University.

Researchers have known for quite a while that adolescent brains are typically more malleable (or plastic) than adult ones, allowing them  for example to learn foreign languages much faster and recover from any brain injuries. The relative rigidity of the adult brain stems (mostly) from the function of a single gene that slows the rapid change in synaptic connections between neurons. Now, Yale researchers have identified the key genetic switch for brain maturation a study released March 6 in the journal Neuron.

The Nogo Receptor 1 gene supresses the high levels of plasticity in the adolescent brain as you grow up. In mice without this gene, juvenile levels of brain plasticity persist throughout adulthood, allowing them to keep the young, learning-avid brain as they age. Furthermore, the supression of the gene in older mice also reset their brains to the adolescent levels of plasticity.

“These are the molecules the brain needs for the transition from adolescence to adulthood,” said Dr. Stephen Strittmatter. Vincent Coates Professor of Neurology, Professor of Neurobiology and senior author of the paper. “It suggests we can turn back the clock in the adult brain and recover from trauma the way kids recover.”

Not only can we recover from trauma the way children do, but we can also literally improve our minds, indirectly keeping the child-like curiosity avid as we age, leading to better and healthier lives. So far, this study has only been conducted on mice, and it will most likely take a while before it is adapted to humans, but I for one am holding my breath. To think that such a big change depends on a single gene…

“We know a lot about the early development of the brain,” Strittmatter said, “But we know amazingly little about what happens in the brain during late adolescence.”

share Share

Ohio Couple Welcomes World's “Oldest Baby” From 30-Year-Old Frozen Embryo

A record-breaking birth brings new questions about the limits of life in cold storage

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

This Study Finds a Chilling Link Between Personality Type and Trump Support

Malevolent traits and reduced empathy go hand in hand.

Stuttering Has Deep Genetic Roots and May Affect Your Ability to Clap to a Beat

A massive genetic study found that stuttering is not just about nurture and may link to processing rhythm itself.

Your Brain Gives Off a Faint Light and It Might Say Something About It Works

Some researchers believe that ultraweak photon emissions could be used to interpret brain activity.

If You’re Nostalgic for a Place, It’s Probably Somewhere Near Water

There's just something about the sea.

Ancient DNA Reveals the Surprising Origins of Attila’s Huns. Genetics Point to an Ancient Mongolian Empire

Ancient DNA traces the Huns' journey from Mongolia to Europe. But this wasn't straightforward.

UK Families Welcome First Healthy Babies Born With DNA From Three People

Eight children were born with DNA from three people to prevent a deadly genetic disease.

Fasting Before Bed Could Supercharge Your Brain’s Memory System While You Sleep

Skipping dinner might be a weird but effective way to boost your memory.

Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

His genome held strange secrets: a turbocharged alcohol gene, rewired brain chemistry, and a slow-burn caffeine receptor.