homehome Home chatchat Notifications


Scientists find how lizards regenerate their tails

It’s one of the most remarkable adaptations in the animal world – growing a tail or a limb. Some lizards do it, salamanders do it, and by learning how they do it, we may soon be able to do it as well; with technology, that is. A team of researchers have discovered the genetic “recipe” for […]

Mihai Andrei
August 22, 2014 @ 5:02 am

share Share

It’s one of the most remarkable adaptations in the animal world – growing a tail or a limb. Some lizards do it, salamanders do it, and by learning how they do it, we may soon be able to do it as well; with technology, that is.

The green anole lizard (Anolis carolinensis) can lose and then regrow its tail, using cartilage and fat to replace the bone.

A team of researchers have discovered the genetic “recipe” for lizard tail regeneration which, at the very basic level, comes down to the right combination and quantity of genes. To make things even more interesting, we humans have the same genes used in tail regrowth, so the study has a lot of potential.

“Lizards basically share the same toolbox of genes as humans,” said lead author Kenro Kusumi, professor in ASU’s (Arizona State University) School of Life Sciences and associate dean in the College of Liberal Arts and Sciences. “Lizards are the most closely-related animals to humans that can regenerate entire appendages. We discovered that they turn on at least 326 genes in specific regions of the regenerating tail, including genes involved in embryonic development, response to hormonal signals and wound healing.”

The interdisciplinary team studied how the green anole lizard, Anolis carolinensis, can lose its tail when attacked by a predator and then regrow it back. They used next-generation molecular and computer analysis tools to examine the genes turned on in tail regeneration. They found that lizards have quite an unique lengthy pattern of tail regeneration, different to what salamanders do, for example.

“Regeneration is not an instant process,” said Elizabeth Hutchins, a graduate student in ASU’s molecular and cellular biology program and co-author of the paper. “In fact, it takes lizards more than 60 days to regenerate a functional tail. Lizards form a complex regenerating structure with cells growing into tissues at a number of sites along the tail.”

Lizards don’t regenerate the bone in the tail – instead, the bone is replaced by cartilage and fat, losing some of its flexibility and power. But if this growing technique were to be applied in humans, substitutes could be used. The key here was identifying the genetic pathway that enables regeneration – and that’s exactly what scientists did.

“We have identified one type of cell that is important for tissue regeneration,” said Jeanne Wilson-Rawls, co-author and associate professor with ASU’s School of Life Sciences. “Just like in mice and humans, lizards have satellite cells that can grow and develop into skeletal muscle and other tissues.”

“Using next-generation technologies to sequence all the genes expressed during regeneration, we have unlocked the mystery of what genes are needed to regrow the lizard tail,” said Kusumi. “By following the genetic recipe for regeneration that is found in lizards, and then harnessing those same genes in human cells, it may be possible to regrow new cartilage, muscle or even spinal cord in the future.”

The team hopes their findings will one day be applied to medical situations such as spinal cord injuries, birth defects or arthritis.

Source: Arizona State University.

 

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.