homehome Home chatchat Notifications


Gene therapy restores hearing in deaf mice, paving the way for human treatment

Mice with genetic hearing loss could sense and respond to noises after receiving working copies of their faulty genes, researchers report. Because the mice’s mutated genes closely correspond to those responsible for some hereditary human deafness, the scientists hope the results will inform future human therapies.

Alexandru Micu
July 14, 2015 @ 6:04 pm

share Share

In Mark 7:31-34, everyone’s favorite Galilean cured a deaf man so that he could hear again. Not ones to be one up-ed so easily, researchers injected genetically modified viruses – a procedure known as virotherapy – to replace faulty genes in mice with genetic deafness to help restore their hearing, and the results are promising.

By the look on its furry little face, it’s probably Skrillex.
Image via: head-fi.org

We wrote about how gene therapy was used to restore hearing in guinea pigs and how drugs were used to promote regeneration in mice’s ears. But those trials aimed to treat the effects of noise trauma. Now, researchers tried to restore hearing to mice that suffered from genetic hearing loss.

Some of them could sense and respond to noises after receiving working copies of their faulty genes, researchers report on July 8 in Science Translational Medicine. Because the mice’s mutated genes closely correspond to those responsible for some hereditary human deafness, the scientists hope the results will inform future human therapies.

Inner ear hair cells, responsible for “catching” sound waves, viewed under an electron microscope.
Image via: asbmb.org

“I would call this a really exciting big step,” says otolaryngologist Lawrence Lustig of Columbia University Medical Center.

The ear uses specialized sound-sensing cells, named hair cells that convert movement in their environment -i.e. noises- into information the brain can process. Hair cells need specific proteins to work properly, and alterations in the genetic blueprints for these proteins can cause deafness.

To combat the effects of two such mutations, the scientists injected viruses containing healthy, functioning versions of the genes into the ears of deaf baby mice. The virus infected some hair cells, giving them working genes.

A mutation causes sound-sensing cells (bright green) to die off quickly in deaf mice, but gene therapy can rescue these cells (right) in mice given a virus that delivers a working gene. Two inner ear locations are shown.
Image via: sciencenews.org

The method was used on mice showing two different types of deafness-causing mutations. For one of them, mice showed neural activity indicative of hearing, and even jumped (adorably so, probably; the study sadly does not mention) when exposed to loud noises. Treated mice with the other mutation didn’t respond to noises, but the gene therapy helped their hair cells — which normally die off quickly due to the mutation — survive. All of the untreated mice, in the control group, remained deaf.

It is however a partial fix. The mice that responded to the treatment had most of their inner hair cells, that allow basic hearing, use the new genes. But few outer hair cells, which amplify noises, accepted the viral delivery. It’s hard to get outer hair cells to respond to gene therapy, Lustig says. Still, inner hair cells control most sound transmission, he added.

The scientists hope to eventually identify the right virus and genetic instructions to treat all hair cells and get complete recovery of hearing, says study coauthor Jeffrey Holt, a neuroscientist at Boston Children’s Hospital. The team’s immediate goals are to improve the viral infection rate and test if the treatment can last for long time periods, Holt says. He also mentioned that the viruses used to deliver the genes are safe and already used in human gene therapies.

Gene therapies must work as well as existing cochlear implant technologies to become a good treatment option, Lustig adds. But a functioning inner ear would ultimately do a far better job than any cochlear implant could.

“Ultimately, we’ll get there.”

 

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes