homehome Home chatchat Notifications


An incursion in the colorful world of fluorescent proteins

The discovery of green fluorescent proteins heralded a revolution in cell biology, enabling researchers to monitor cellular processes by applying themselves to a variety of protein and enzyme targets. Over the years, they’ve enabled thousands of successful experiments, triggering events that ultimately saved many lives. In 1961, Osamu Shimomura and Frank Johnson, working at the Friday Harbor […]

Mihai Andrei
February 8, 2016 @ 5:15 pm

share Share

In 1992 Douglas Prasher figured out how to clone the DNA of GFP and in 1994 Martin Chalfie expressed this DNA in E. coli, seen here.

The discovery of green fluorescent proteins heralded a revolution in cell biology, enabling researchers to monitor cellular processes by applying themselves to a variety of protein and enzyme targets. Over the years, they’ve enabled thousands of successful experiments, triggering events that ultimately saved many lives.

It all started with this jellyfish.

In 1961, Osamu Shimomura and Frank Johnson, working at the Friday Harbor Laboratories of the University of Washington were working on isolating a blue bioluminescent protein from the Aequorea victoria jellyfish. When they succeeded, they called it aequorin. However, even more interesting than the aequorin, they noticed that a second protein they extracted was able to produce green fluorescence when illuminated with ultraviolet light, although it lacked the blue-emitting properties of aequorin. They called it, rather unceremoniously, Green Fluorescent Protein (GFP). To this day, we don’t know the purpose of the aequorin or the GFP in the jellyfish, but we’ve learned how to use them ourselves.

Since then, researchers have become much better at separating different colors for the fluorescent proteins. These are E. coli bacteria expressing different color fluorescent proteins made by Roger Tsien, one of the pioneers and central figures in developing fluorescent proteins. Image via Telegraph

The same thing, with a bit more artistic creativity. Image via Imperial College of London.

GFP can be used as a reporter gene – a gene that signals something; for example, a marker can be developed, making cancer cells (and cancer cells only) light up in green. GFP is used widely in cancer research to label and track cancer cells. But that’s not all it can do. The protein has potential uses both in regenerative medicine, and in gene therapy.

A mouse leg with different expressing proteins. Image via A Fractured Reality.

This is your brain on drugs – more on this Harvard website.

GFP can be introduced and maintained through breeding in most type of living cells – from bacteria and yeast to mammals, including humans. In fact, several transgenic pets have been developed – including a fluorescent rabbit, a group of mice and green fluorescent pigs. Creating transgenic, fluorescent fish has become so trivial that several modified species can be found on the market.

Instead of making just a few cells glow, you can make entire organs glow – or even entire organisms. Source.

Somewhere in Minnesota sits a litter of fluorescent green kittens that may be immune to AIDS – more on that here.

The future also has much in store for these proteins; on one hand, the goal is to expand and fine-tune the existing color possibilities derived from the jellyfish. Researchers also want to create fluorescent proteins emitting in the orange to far red regions of the visible light spectrum. Especially in mammal cells, autofluorescence and the absorption of light are greatly reduced at the red end of the spectrum – so going closer to this range would improve practical applications, including those on humans.

Some of the most commonly used colors. Credit: Mark Zimmer.

Secondly, the idea is to develop better biosensors based on GFP. The field of biosensors is developing at a staggering rate, and I wouldn’t be surprised to see GFP play a bigger role in the future. Martin Chalfie, Osamu Shimomura, and Roger Y. Tsien were awarded the 2008 Nobel Prize in Chemistry on 10 October 2008 for their discovery and development of the green fluorescent protein, but the future looks even brighter.

Sources: 1, 2, 3

share Share

70% of the land in Britain is still owned by 1% of the population. Many descend from William the Conqueror's army

Norman descendants are still doing very fine in today's Britain.

Climate Change Triggered European Revolutions That Changed the Course of History

Severe volcanic eruptions may have set the stage for several revolutions.

A Single Mutation Made Horses Rideable and Changed Human History

Ancient DNA reveals how a single mutation reshaped both horses and human history.

Doctors with More Patient Complaints Also More Likely to Take Industry Money, Study Finds

There seems to be a concerning link between patient complaints and industry payouts.

Scientists Create Synthetic Organism That Rewrites Life’s Universal Genetic Code

Researchers engineered E. coli to run on just 57 codons instead of 64

Orange Cats Are Genetically Unlike Any Other Mammal and Now We Know Why

The iconic coats are due to a mutation not seen in other animals.

Can AI help us reduce hiring bias? It's possible, but it needs healthy human values around it

AI may promise fairer hiring, but new research shows it only reduces bias when paired with the right human judgment and diversity safeguards.

AI Visual Trickery Is Already Invading the Housing Market

Welcome to the new frontier of house hunting: AI-generated real estate photos.

Volkswagen Wants You to Pay a Subscription to Access All the Car Features

You pay a subscription for Netflix, how about your car?

Ohio Couple Welcomes World's “Oldest Baby” From 30-Year-Old Frozen Embryo

A record-breaking birth brings new questions about the limits of life in cold storage