homehome Home chatchat Notifications


Research suggests we use 4 times more DNA than previously believed

Less than 1.5 percent of our DNA is used in a conventional way, that is to encode for proteins – this was the common sense around this issue 10 years ago; recently, previous research has shown that 5-8% of the genome is conserved at the level of DNA sequence, indicating that it is functional, but […]

Mihai Andrei
July 15, 2013 @ 8:30 am

share Share

Less than 1.5 percent of our DNA is used in a conventional way, that is to encode for proteins – this was the common sense around this issue 10 years ago; recently, previous research has shown that 5-8% of the genome is conserved at the level of DNA sequence, indicating that it is functional, but we don’t really know exactly what it does. However, a new study conducted by Australian geneticisits suggests that much more (possibly up to 30%) is conserved, and actually used at the level of RNA structure.

dna

Credit: © Maridav / Fotolia

At a very basic level, DNA is the blueprint for our bodies – but it must be copied into another instance before it is actualised. The DNA molecule encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Through a process called ‘transcription’, DNA is copied into RNA, some of which encodes the proteins that carries out various tasks required by our cells. Just like very small Lego blocks, RNA molecules bind with each other in very specific ways, creating a very complex 3D structure. Dr Martin Smith and Professor John Mattick, from Sydney’s Garvan Institute of Medical Research, have created a very complicated method of predicting these RNA structures.

“Genomes accumulate mutations over time, some of which don’t change the structure of associated RNAs. If the sequence changes during evolution, yet the RNA structure stays the same, then the principles of natural selection suggest that the structure is functional and is required for the organism,” explained Dr Martin Smith.

Using this method, they ultimately concluded that we actively use much more DNA for coding than previously believed.

“Our hypothesis is that structures conserved in RNA are like a common template for regulating gene expression in mammals – and that this could even be extrapolated to vertebrates and less complex organisms.”

“We believe that RNA structures probably operate in a similar way to proteins, which are composed of structural domains that assemble together to give the protein a function.”

“We suspect that many RNA structures recruit specific molecules, such as proteins or other RNAs, helping these recruited elements to bond with each other. That’s the general hypothesis at the moment – that non-coding RNAs serve as scaffolds, tethering various complexes together, especially those that control genome organization and expression during development.”

share Share

Revolutionary single-dose cholesterol treatment could reduce levels by up to 69%

If confirmed, this could be useful for billilons of people.

Iron Deficiency Can Flip The Genetic Switch That Determines Sex, Turning Male Embryos into Female

Researchers show maternal iron levels can override genetic sex determination in mice.

Taking Vitamin D Daily Might Actually Slow Down Aging at the Cellular Level

A new clinical trial suggests vitamin D slows cellular aging by preserving telomere length.

This Baby’s One-in-a-Million Genetic Disorder Had No Cure. So Scientists Designed One Just for Him

The first personalized CRISPR therapy saved a child’s life. Can it save others too?

Scientists Gave a Mouse a Stretch of Human DNA and Its Brain Grew 6% Bigger

A single DNA enhancer may help explain the human brain’s extraordinary size and complexity.

Scientists Close to Finding Leonardo da Vinci’s DNA Using a 21-Generation Family Tree

Bridging five centuries to explore the DNA of one of history’s most enigmatic minds.

This Superbug Learned How to Feed on Plastic from Hospitals

Hospitals might be unknowingly feeding their worst microbial enemies.

Scientists Blasted Human Cells With 5G Radiation and the Results Are In

Study finds human skin cells remain genetically unphased even under extreme 5G exposure.

Orange Cats Are Genetically Unlike Any Other Mammal and Now We Know Why

The iconic coats are due to a mutation not seen in other animals.

Scientists Map the DNA of a Mysterious Creature Called the Asian Unicorn That No One’s Seen in Years

The saola’s newly sequenced genome offers hope for one of Earth’s rarest mammals.