homehome Home chatchat Notifications


Researchers create DNA pottery that could one day deliver drugs inside your body

These aren't your average pots and bowls.

Mihai Andrei
February 6, 2023 @ 1:34 am

share Share

DNA is the blueprint for life as we know it (at least most life). Carrying the genetic instructions for living organisms, DNA is essential for our development and growth as biological organisms. But DNA can double as something completely different: a construction material.

Top row: 3D models of various rounded shapes. Bottom row: Electron microscope images of those same shapes made with DNA. Arizona State University.

The human body doesn’t really like it when foreign DNA enters the body. If an organism containing foreign DNA enters, it can trigger an immune response. But if ‘naked’ foreign DNA enters, it would simply become absorbed and even used as a nutrient. So researchers are thinking we could use this to our advantage and repurpose DNA as a carrier.

Of course, getting DNA to do things as we want is not exactly easy. In addition to being an unconventional material to work with, DNA strands are very small — which makes the accomplishment of Duke University and Arizona State University all the more impressive.

The DNA nanostructures were assembled and imaged by co-authors Raghu Pradeep Narayanan and Abhay Prasad in professor Hao Yan’s lab at Arizona State. They created small, pottery-like structures from DNA — vases, bowls, and hollow spheres. With nanometer precision, they even put these structures inside one another, much like a Russian doll.

Depiction of a DNA structure. Image credits: DNAxis.

Each of these objects is so tiny that you could fit 50,000 of them on the head of a pin — they’re no more than two-millionths of an inch across. Developing something so small wasn’t easy, and it started with an innovative piece of software.

Incremental knowledge

As it so often happens in modern science, the finding didn’t come all at once: it was a process of building bit by bit and making incremental progress.

Duke PhD student Dan Fu and his adviser John Reif developed a software called DNAxiS — it’s a free online tool that comes equipped with tutorials and a GitHub repository. This software uses a method described in 2011 by Yan, which works by coiling a long strand of DNA double helix into concentric rings that are then stacked to make the contour of the desired objects. Smaller DNA strands are used to bind and staple the long strands in the desired shape.

It’s not the first time small structures have been built from DNA. Back in the 1980s, researchers were already experimenting with simple shapes like cubes or pyramids — but rounded structures like pots have proven to be much more difficult. The new study expands the range of shapes that can be designed with the help of DNA, and to make it all the more exciting, DNAxiS is open source, which means researchers and companies from all around the world can use it and build on it.

“If there are too few, or if they’re in the wrong position, the structure won’t form correctly,” Fu said. “Before our software, the curvature of the shapes made this an especially difficult problem.”

The software takes a desired model as an input and then, within a day, outputs a list of DNA strands that can form the desired output, by mixing the four bases that make up DNA: adenine (A), cytosine (C), guanine (G), and thymine (T). That’s why researchers designed an array of different DNA-made objects to prove the robustness of the approach.

The structures aren’t just for the sake of design. Because the shape can be tweaked into more rounded, natural structures, the approach could be used to create tiny containers for delivering drugs or for other medical applications. The software could also be used to create micro-molds casting metal nanoparticles with specific shapes for solar cells and other applications.

It may still be some time before the practical applications actually start emerging, but “it’s a big step forward in terms of automated design of novel three-dimensional structures,” Reif said.

Journal Reference: “Automated Design of 3D DNA Origami With Non-Rasterized 2D Curvature,” Daniel Fu, Raghu Pradeep Narayanan, Abhay Prasad, Fei Zhang, Dewight Williams, John S. Schreck, Hao Yan, John Reif. Science Advances, Dec. 23, 2022. DOI: 10.1126/sciadv.ade4455

share Share

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.

Japan Is Starting to Use Robots in 7-Eleven Shops to Compensate for the Massive Shortage of Workers

These robots are taking over repetitive jobs and reducing workload as Japan combats a worker crisis.

Researchers Turned WiFi into a Medical Tool That Reads Your Pulse With Near Perfect Accuracy

Forget health trackers, the Wi-Fi in your living room may soon monitor your heartbeat.

A Light-Based AI Can Generate Images Using Almost No Energy

The future of AI art might be powered by lasers instead of GPUs.

Your Next Therapist Could be a Video Game or a Wearable and It Might Actually Work

An inside look at a new wave of evidence-backed digital therapies.

NYC Man Was Jailed for Days Because of a Blurry CCTV Image and a Faulty AI Match

Flawed tech, false ID, and two days behind bars: how it happened anyway.

Researchers Transformed Sperm Cells into Tiny, Microbots That Could Deliver Drugs to Hard-to-Reach Places

Who had sperm bots on their bingo card for this year?

Scientists Reprogram Blood Cells to Prevent Alzheimer’s and Fight Aging In the Brain

In a promising new study, modified young immune cells improved brain performance in older mice.

3D-printed 'ghost guns' are surging in popularity and law enforcement is struggling to keep up

The use of 3D-printed guns in criminal and violent activities is likely to continue to increase. And governments and police will continue to have trouble regulating them.