homehome Home chatchat Notifications


Researchers create bacteria synthetic DNA

Move away, Nature -- come in, Life 2.0.

Mihai Andrei
May 16, 2019 @ 2:59 pm

share Share

Researchers have produced E. coli bacteria with completely synthetic DNA. While the research was aimed at studying genetic redundancies, the potential applications are limitless.

E. coli. Image credits: NIAID.

Researchers at the University of Cambridge have rewritten the DNA of the bacteria Escherichia coli, a strain of bacteria that is normally found in soil and the human gut. Although the bacteria look a bit weird and have some issues reproducing, they are alive and seem to function relatively normally — running by a set of rules directed by the human-edited genome.

For all its diversity and variation, all life on Earth (with the exception of some viruses) is based on DNA. The two-stranded DNA molecule is the blueprint for life as we know it, and each strand is composed of molecules containing just four bases: adenine, cytosine, guanine, and thymine (or A, C, G and T). Think of it this way: a handful of chemical letters are used to made three-letter words, and these words are then passed out as biological orders to proteins.

The four letters can be strung into 64 combinations of three-letter words called codons. Nearly all life on Earth uses these 64 codons, and these codons join to form virtually all proteins that can be found in nature — with the mention that three codons are used as punctuation marks, separating individual codons from one another.

However, there is a lot of redundancy within these combinations. Many combinations do the same thing, so they can theoretically be removed — but where do you stop? In order to study this, Jason Chin, an expert in synthetic biology who led the project, conducted a genetic “word swap”. He went through the bacteria’s DNA, and whenever he came across a particular codon (TCG, a codon that makes an amino acid called serine), he rewrote it as another one (AGC, which does the same job). He did this for three sets of codons, but the resulting genome was too long and complicated to brute-force in a cell — so instead, researchers split it into small segments and swapped them piece by piece inside the E. coli genome. By the time they were done, there were no natural segments in the bacteria’s DNA; the whole thing was synthetic.

The team then watched the bacteria go about its life. The first good news came immediately: it lived. It grew slower and presumably weaker than its “normal” version, but it was very much alive.

It’s not the first time a bacteria has been created with a synthetic DNA, but this achievement is by far the most complex achievement. In 2010, researchers from the J. Craig Venter Institute in Maryland created the first cell with synthetic DNA. In 2017, researchers at the Scripps Institute unveiled the first stable, semi-synthetic organism. Researchers are slowly starting to experiment with nature’s lifeforms and moving towards Life 2.0. Knowing which codons we need and which can be dropped is essential for this, especially as other groups are working on creating synthetic DNA for even more complex creatures such as baker’s yeast. The potential applications are limitless.

In addition to shedding new light on the chemical intricacies of DNA, this type of designer bacteria can also come in handy in the medical industry. They could, for instance, stop viral infections, or deliver diabetes or other compounds for treating serious conditions such as cancer and heart disease. After a certain point, you could even use it for more frivolous purposes, such as creating tastier bread or beer.

There is, however, a very strong impediment to this type of study: costs. Producing and inserting synthetic DNA is still an extremely expensive pursuit. Now that we know it can be done, we also know that in theory, you can recode anything. Actually having the know-how and the resources to do that remains a different matter.

The study has been published in Nature.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.