homehome Home chatchat Notifications


How CRISPR gene editing is poised to change everything from medicine to ecosystems

CRISPR could be a massive game changer.

Dragos Mitrica
December 20, 2017 @ 8:22 pm

share Share

Until recently, gene editing used to be relegated to science fiction novels and movies. The idea of being able to edit our genetic code or the genetics of other creatures was something that was totally out of reach — until CRISPR changed all that.

CRISPR-Cas9 is a customizable tool that lets scientists cut and insert small pieces of DNA at precise areas along a DNA strand. Credits: National Human Genome Research Institute (NHGRI) from Bethesda, MD, USA.

CRISPR– short for “clustered regularly interspaced short palindromic repeats” — was first observed more than three decades ago, but wasn’t patented until 2014. But what does Crispr do and how is it changing both our ecosystems and our medical systems?

What Is CRISPR?

CRISPR, in layman’s terms, is an editing tool for DNA. It uses the natural defense mechanisms of some single-celled organisms to cut and paste, so to speak, sections of DNA. This allows the DNA to be manipulated and edited.

The CRISPR process was first described back in 1985, but it wasn’t demonstrated as a viable tool for gene editing until 2007, when a food company used it to modify the streptococcus thermophilus bacteria that is commonly found in dairy products. By utilizing CRISPR, these researchers were able to modify how the bacteria reacted to a virus attack, improving overall bacterial immunity.

CRISPR Applications

Other than the bacterial modification we’ve already mentioned, what has Crispr been used for and what could it help accomplish in the future?

This is just a small sample of the advances that have been made using the CRISPR DNA editing method — most of which have been completed in the past few years. What could this be used for in the future?

  • Pest control — Specifically, pests like mosquitoes and ticks that can spread disease. Crispr can theoretically be used to modify these pests in a laboratory setting. Once released into the wild, the modified pests can either spread bacteria that prevents pests from spreading disease or cause the local pest population to die out. In mosquitoes, CRISPR has been used in the lab to create sterile male mosquitoes that won’t bite and can’t breed.
  • In vitro modifications — This is probably the most ethically questionable application for CRISPR, but it could potentially be used to edit the human genome to cause positive traits to manifest or to remove the genes that cause specific diseases.

Potential Impacts

Utilizing CRISPR on things like mosquitoes might seem like a small enough thing, but we have to keep one thing in mind: everything in an ecosystem, from the smallest microorganism to the largest apex predator, has a significance; the effects of such actions could be far-reaching and difficult to anticipate. We might think eliminating a small pest like a tick or mosquito might not have any impact on this ecosystem, but when it comes right down to it, we don’t know enough about these ecosystems to truly and accurately judge what will happen if we artificially remove a species from it.

Releasing genetically modified mosquitoes designed to eliminate the mosquito population could have no effect at all — it’s entirely possible they will simply be bred out of the population and, as Jurassic Park’s Dr. Ian Malcolm so aptly put it, life will “find a way.” Unfortunately, in the wild, these genetically modified pests could also mutate and become something completely different — something that could potentially turn an entire ecosystem on its head.

Now, this is a worst-case scenario. But we simply don’t know enough about the impact of these things to start tampering with them on a large scale yet.

CRISPR may be one of the most exciting advances in genetic research in recent years, but we should still be careful with how we use it. We don’t understand the impact of genetic manipulation well enough yet to forge ahead carelessly. Once we’ve studied the impact, though, this could upend the way we interact with the world around us and change medicine as we know it for the better.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.