homehome Home chatchat Notifications


Brain neurons can remodel connections, MIT shows

Contrary to almost a half of century of research, Elly Nedivi, associate professor of neurobiology at the Picower Institute for Learning and Memory and colleagues found that a certain type of neuron that plays a crucial part in autism spectrum disorders is able in fact to remodel itself. It can do this in a strip […]

Mihai Andrei
November 25, 2008 @ 9:24 am

share Share

interneuron

Representation of an interneuron

Contrary to almost a half of century of research, Elly Nedivi, associate professor of neurobiology at the Picower Institute for Learning and Memory and colleagues found that a certain type of neuron that plays a crucial part in autism spectrum disorders is able in fact to remodel itself. It can do this in a strip of brain tissue just 4 times thicker than your average paper.

“This work is particularly exciting because it sheds new light on the potential flexibility of cerebral cortex circuitry and architecture in higher-level brain regions that contribute to perception and cognition,” said Nedivi, who is also affiliated with MIT’s departments of brain and cognitive sciences and biology. “Our goal is to extract clues regarding the contribution of structural remodeling to long-term adult brain plasticity — the brain’s ability to change in response to input from the environment — and what allows or limits this plasticity.”

To prove this, she showed that genetics are not determinant for an internenuron’s capacity to remodel, but that it’s rather imposed by the circuitry within the layers of the cortex. So the genetic lineage would come in second place, thus meaning that this type of neurons could actually remodel.

“Our findings suggest that the location of cells within the circuit and not pre-programming by genes determines their ability to remodel in the adult brain,” Nedivi said. “If we can identify what aspect of this location allows growth in an otherwise stable brain, we can perhaps use it to coax growth in cells and regions that are normally unable to repair or adjust to a changing environment. Knowing that neurons are able to grow in the adult brain gives us a chance to enhance the process and explore under what conditions we can make it happen,” she adds. “In particular, we need to pay more attention to the unique interneuron population that retains special growth features into adulthood.”

share Share

Ohio Couple Welcomes World's “Oldest Baby” From 30-Year-Old Frozen Embryo

A record-breaking birth brings new questions about the limits of life in cold storage

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

We Might Be Ingesting Thousands of Lung-Penetrating Microplastics Daily in Our Homes and Cars — 100x More Than Previously Estimated

Microscopic plastic particles are everywhere and there's more than we thought.

This Scientist Stepped Thousands of Times on Deadly Snakes So You Don't Have To. What He Found Could Save Lives

This scientist is built different.

Scientists Say Junk Food Might Be as Addictive as Drugs

This is especially hurtful for kids.

Stuttering Has Deep Genetic Roots and May Affect Your Ability to Clap to a Beat

A massive genetic study found that stuttering is not just about nurture and may link to processing rhythm itself.

Tooth nerves aren't just for pain. They also protect your teeth

We should be more thankful for what's in our mouths.

Temporary Tattoo Turns Red If Your Drink Has Been Spiked

This skin-worn patch can detect GHB in drinks in under one second