homehome Home chatchat Notifications


Harmless bacteria turned deadly just 30 years ago - now, it kills 500.000 every year

It’s a truly terrifying story, and a truly terrifying disease. The flesh-eating culprit in question is called GAS, or Group A β-hemolytic streptococcus, a highly infective bacteria. Apart from causing the flesh-eating disease necrotizing fasciitis, GAS is also responsible for a range of less harmful infections. But like most bacteria, it was harmless at one point in its […]

Mihai Andrei
April 15, 2014 @ 7:29 pm

share Share

It’s a truly terrifying story, and a truly terrifying disease. The flesh-eating culprit in question is called GAS, or Group A β-hemolytic streptococcus, a highly infective bacteria. Apart from causing the flesh-eating disease necrotizing fasciitis, GAS is also responsible for a range of less harmful infections. But like most bacteria, it was harmless at one point in its evolution – now, researchers have pinned down when this change happened in order to help prevent future epidemics. Their result? It was just 30 years ago.

Bacterias can transfer useful DNA from viruses. Image via Zappys Technology.

After reconstructing their evolutionary history, scientists believe that  these bacteria appeared to have affected humans since the 1980s, after evolving from a less harmful streptococus strain.

Lead researcher James Musser of the Methodist Hospital Research Institute was delighted with the results, which analyzed the genetic background of a total of 3,600 streptococcus strains in order to figure out when the bacteria went rogue.

“This is the first time we have been able to pull back the curtain to reveal the mysterious processes that gives rise to a virulent pathogen.”

So how did the bacteria mutate exactly? First a process called horizontal gene transfer took place – bacterias are known for doing this a lot. In their case, gene transfer happens when foreign DNA is provided by bacteriophages or viruses that specifically target bacteria. Implementing new DNA can be very useful for bacteria, so they do this a lot. In this case, first the DNA allowed the streptococcus cell to produce two harmful toxins, and then an additional mutation made it even more virulent. As Musser explained, the bacteria upgraded itself once more, weakening its host’s immune system so that it can spread the infection even more.

Source: Wikipedia.

Marco Oggioni of the University of Leicester said:

“Because this study used data of the entire genome, all the genetic change could be observed. This makes it possible to identify molecular events responsible for virulence, as you get the full picture.”

It’s shocking and worrying to see that all this happened in no more than 3 decades, but the timeframe checks out.

“The date we deduced coincided with numerous mentions of streptococcus epidemics in the literature,” Musser said. Since 1983, there have been several outbreaks of streptococcus infections across the world. For example, in the UK, streptococcus infections increased in number and severity between 1983 and 1985.

If more and more bacterial genomes are gathered and studied in a similar manner, there is a chance that similar mutations could be found ahead of time – whenever a bacteria or virus starts to go a little bit off the charts. This could be extremely useful in preventing and fighting epidemics.

“In the short term, this discovery will help us determine the pattern of genetic change within a bacteria, and may help us work out how often bacterial vaccines need to be updated,” Musser said. “In the long term, this technique may have an important predictive application—we may be able to nip epidemics in the bud before they even start.”

However, not all researchers are as optimistic, and this is still a matter of debate. Oggiony is skeptical:

“While making such predictions may not be possible, this research will have other applications,” he said. “Knowing which genetic changes happen when can help tailor drug discovery research in a certain direction.”

share Share

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

Stuttering Has Deep Genetic Roots and May Affect Your Ability to Clap to a Beat

A massive genetic study found that stuttering is not just about nurture and may link to processing rhythm itself.

Ancient DNA Reveals the Surprising Origins of Attila’s Huns. Genetics Point to an Ancient Mongolian Empire

Ancient DNA traces the Huns' journey from Mongolia to Europe. But this wasn't straightforward.

Amish Kids Almost Never Get Allergies and Scientists Finally Know Why

How Amish barns could hold the secret to preventing the onset of allergies.

UK Families Welcome First Healthy Babies Born With DNA From Three People

Eight children were born with DNA from three people to prevent a deadly genetic disease.

Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

His genome held strange secrets: a turbocharged alcohol gene, rewired brain chemistry, and a slow-burn caffeine receptor.

Your Workout Might Be Coaching Your Gut Bacteria to Help Fight Cancer

You gut microbes seem to produce more formate when you exercise and this may be key to fighting tumors.

Researchers stop Parkinson's symptoms in mice using a copper supplement. Could humans be next?

Could we stop Parkinson's by feeding neurons copper?

These Wild Tomatoes Are Reversing Millions of Years of Evolution

Galápagos tomatoes resurrect ancient defenses, challenging assumptions about evolution's one-way path.

Scientists uncover anti-aging "glue" that naturally repairs damaged DNA

Researchers have newly found a very important function for a well-known enzyme.