homehome Home chatchat Notifications


Algae produce 3-D, complex proteins used for cheap, yet effective anti-cancer treatment

Scientists at UC San Diego have finally collected the fruits of their decade-long labor after they managed to genetically engineered algae that can produce complex antibiotics that prevent cancer, otherwise extremely expensive to develop in laboratories. Cheaper treatment would thus be possible, that’s not only limited to cancer, but a slew of other afflictions otherwise treatable would expensive designer-drugs. […]

Tibi Puiu
December 13, 2012 @ 2:53 pm

share Share

Scientists at UC San Diego have finally collected the fruits of their decade-long labor after they managed to genetically engineered algae that can produce complex antibiotics that prevent cancer, otherwise extremely expensive to develop in laboratories. Cheaper treatment would thus be possible, that’s not only limited to cancer, but a slew of other afflictions otherwise treatable would expensive designer-drugs.

Chlamydomonas reinhardtii, a green alga used widely in biology laboratories, can produce many kinds of “designer proteins.”

Chlamydomonas reinhardtii, a green alga used widely in biology laboratories, can produce many kinds of “designer proteins.” (c) UCSD

Typically, complex and foldable proteins are typically made from mammalian cells or bacteria in a complex, two-step process by first developing the antibody domain in the cells, then purifying them. Then again the purified cells are then chemically attached to a toxin outside of the cell, before being yet again re-purified.

“Because we can make the exact same drug in algae, we have the opportunity to drive down the price down dramatically,” said Stephen Mayfield, a professor of biology at UC San Diego and director of the San Diego Center for Algae Biotechnology (SD-CAB), a consortium of research institutions that is also working to develop new biofuels from algae.

The researchers used Chlamydomonas reinhardtii, a green alga used widely in biology laboratories as a genetic model organism, to produce a range of therapeutic, complex therapeutic proteins. These were produced using two domains -— one of which contains an antibody, which can home in on and attach to a cancer cell and another domain that contains a toxin that kills the bound cancer cells. The team struck gold in May of this year when they engineered algae to produce an even more complex protein – one they used to create a vaccine that could protect billions of people from malaria.

“What the development of the malarial vaccine showed us was that algae could produce proteins that were really complex structures, containing lots of disulfide bonds that would still fold into the correct three-dimensional structures,” said Mayfield. “Antibodies were the first sophisticated proteins we made. But the malarial vaccine is complex, with disulfide bonds that are pretty unusual. So once we made that, we were convinced we could make just about anything in algae.”

Check the fusion protein described in greater detail by this UCSD video below.



If the researchers could make the protein necessary for the malaria vaccine, then they can do just about anything. But they don’t want to stop here. They’re looking to develop even more complex proteins, impossible to find in nature, for various uses.

“Can we string together four or five domains and produce a designer protein in algae with multiple functions that doesn’t exist in nature? I think we can?” he added. “Suppose I want to couple a receptor protein with a series of activator proteins so that I could stimulate bone production or the production of neurons? At some point you can start thinking about medicine the same way we think about assembling a computer, combining different modules with specific purposes. We can produce a protein that has one domain that targets the kind of cell you want to impact, and another domain that specifies what you want the cell to do.”

The research project was supported by grants from the National Science Foundation and The Skaggs Family Foundation.

source: UCSD

 

share Share

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

We Might Be Ingesting Thousands of Lung-Penetrating Microplastics Daily in Our Homes and Cars — 100x More Than Previously Estimated

Microscopic plastic particles are everywhere and there's more than we thought.

This Scientist Stepped Thousands of Times on Deadly Snakes So You Don't Have To. What He Found Could Save Lives

This scientist is built different.

Scientists Say Junk Food Might Be as Addictive as Drugs

This is especially hurtful for kids.

Stuttering Has Deep Genetic Roots and May Affect Your Ability to Clap to a Beat

A massive genetic study found that stuttering is not just about nurture and may link to processing rhythm itself.

Southern Ocean Salinity May Be Triggering Sea Ice Loss

New satellite technology has revealed that the Southern Ocean is getting saltier, an unexpected turn of events that could spell big trouble for Antarctica.

Tooth nerves aren't just for pain. They also protect your teeth

We should be more thankful for what's in our mouths.

Temporary Tattoo Turns Red If Your Drink Has Been Spiked

This skin-worn patch can detect GHB in drinks in under one second