homehome Home chatchat Notifications


Study Finds Natural Compound Can Be Used for 3-D Printing of Medical Implants

Researchers from North Carolina State University, the University of North Carolina at Chapel Hill and Laser Zentrum Hannover have worked together to discover a natural compound which can be used in the 3D printing process of creating medical implants out of non-toxic polymers. The compound goes by the name riboflavin, but is better known as […]

Mihai Andrei
October 28, 2013 @ 3:59 am

share Share

Researchers from North Carolina State University, the University of North Carolina at Chapel Hill and Laser Zentrum Hannover have worked together to discover a natural compound which can be used in the 3D printing process of creating medical implants out of non-toxic polymers. The compound goes by the name riboflavin, but is better known as vitamin B2.

Narayan-riboflavin-paper-image

“This opens the door to a much wider range of biocompatible implant materials, which can be used to develop customized implant designs using 3-D printing technology,” says Dr. Roger Narayan, senior author of a paper describing the work and a professor in the joint biomedical engineering department at NC State and UNC-Chapel Hill.

3D printing has a huge potential in a number of fields, and especially in medicine – printing prosthetics, artificial tissues, even bacteria can save countless lives, and the possibilities are endless. This time, researchers wanted to find a way to improve a 3-D printing technique called two-photon polymerization, which is very useful for small objects with detailed features – such as “scaffolds for tissue engineering, microneedles or other implantable drug-delivery devices”.

The technique doesn’t work like classical 3D printing – instead you manipulate a photoreactive liquid into any shape you want; in this case, photoreactive means that when exposed to light, the liquid becomes solid, allowing researchers to mold it into any desired form. However, most photoreactive substances are toxic, which is not something you want when you’re trying to develop medical implants.

But now researchers have determined that riboflavin can be mixed with a precursor material to make it photoreactive – and riboflavin is both nontoxic and biocompatible – it’s a vitamin found in pretty much everything. There you have it – 3D printing, revolutionizing yet another field of medicine.

Scientific reference:  “Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoiniator,”  published online in Regenerative Medicine.

share Share

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

We Might Be Ingesting Thousands of Lung-Penetrating Microplastics Daily in Our Homes and Cars — 100x More Than Previously Estimated

Microscopic plastic particles are everywhere and there's more than we thought.

This Scientist Stepped Thousands of Times on Deadly Snakes So You Don't Have To. What He Found Could Save Lives

This scientist is built different.

Scientists Say Junk Food Might Be as Addictive as Drugs

This is especially hurtful for kids.

Stuttering Has Deep Genetic Roots and May Affect Your Ability to Clap to a Beat

A massive genetic study found that stuttering is not just about nurture and may link to processing rhythm itself.

Tooth nerves aren't just for pain. They also protect your teeth

We should be more thankful for what's in our mouths.

Temporary Tattoo Turns Red If Your Drink Has Been Spiked

This skin-worn patch can detect GHB in drinks in under one second

7,000 Steps a Day Keep the Doctor Away

Just 7,000 steps a day may lower your risk of death, dementia, and depression.