homehome Home chatchat Notifications


Second gene-silencing mechanism found, could lead to viable clones and safer in vitro

It's gotta be pretty important if it has a back-up system in place.

Alexandru Micu
July 19, 2017 @ 10:04 pm

share Share

A new cellular gene-silencing mechanism has been identified and could hold the key to safer in vitro fertilization, even the cloning of animals.

Gene cutting.

Image credits Arek Socha.

We each inherit two working copies of most genes from our parents, one from the maternal and one from the paternal side. But for a tiny minority of genes, or allele, only one copy can be allowed to function while the other remains inactivated from inception until the moment we die. This mechanism is called imprinting, and faulty imprinting can cause a host of genetic syndromes, such as Angelman’s (too much imprinting, so both genes are inactivated) or Beckwith-Wiedemann syndrome (too little imprinting, so both alleles are expressed).

Imprinting is why a lion and a tiger can have two types of offspring. If the female is lion, the couple will sire a tigon, which generally-speaking are smaller than both the parent species. But if the female is a tiger, they will sire a liger — which is much larger in general than any of the initial two. The differences in size and appearance come down, in part, to imprinting differences in maternal- and paternal-inherited genes.Usually, imprinting takes place naturally during inception, through a process called methylation — basically, methyl groups are added to a gene to shut it down.

But in artificial fertilization methods, such as in vitro for humans or straight-up cloning of mammals, imprinting can sometimes be faulty or bypassed altogether. However, a new discovery from the Howard Hughes Medical Institute might hold the key to reversing faulty imprinting. The team, whose correspondent author is Investigator Yi Zhang, found another mechanism cells can use to silence imprinted genes — by attaching specially-modified proteins called histones to the problematic alleles.

These genes are histone-y

The researchers succeeded in shutting down the activity of some imprinted genes in mice by modifying a histone known as H3K27 to carry methyl groups. They also identified 76 genes in mice that likely belong to the imprinted gene group, which is a pretty big number: until now, roughly 150 imprinted genes have been found in mice and roughly half that in humans.

There’s still a lot of work to be done on imprinting, Zhang says, but finding a second mechanism underpinning it just goes to show how important imprinting is from evolution’s point of view. It’s possible that the one the team describes in their paper evolved as a back-up to catch any improperly-imprinted alleles before they can cause any damage.

Imprinting disorders seem to develop more often in children conceived in vitro or through similar methods, the paper notes. It’s still unclear as to why. It could be that imprinting problems are inherently tied to infertility itself, or it may well be that these procedures somehow interfere with imprinting and we just don’t know it yet. But Zhao thinks their findings could give hope to couples who’re having difficulties conceiving and are pursuing assisted reproductive technologies that their child will be healthy.

Furthermore, improper imprinting could be why we’ve had so little success in cloning a healthy animal. Usually, the process requires that imprinting marks be scrapped in the precursor cells and then re-added in the eggs and sperm. Previous research lends weight to the idea that even minor bugs in this erase-rewrite phase can have dramatic effects on the development of clone embryos.

“The new imprinting mechanism may eventually offer a target for treating such developmental failures,” Zhang concludes.

The paper “Maternal H3K27me3 controls DNA methylation-independent imprinting” has been published in the journal Nature.

share Share

Golden Dome Could Cost A Jaw-Dropping $3.6 Trillion. That's More Than Triple The Entire F-35 Program or 100 Times the Manhattan Project

Can America really afford the Golden Dome?

AI Tool Reveals Signs Of Consciousness In Comatose Patients Days Before Doctors Can Detect It

AI tool tracks minute facial movements to detect consciousness in patients previously thought unresponsive.

Teflon Diets, Zebra Cows, and Pizza-Loving Lizards: The 2025 Ig Nobel Prizes Celebrate Weird Science

Science finds humor and insight in the strangest places — from zebra cows to pizza-eating lizards.

Pet sharks have become cool, but is owning them ethical?

When Laurie was a kid, she had recurrent nightmares that featured her getting eaten by a shark. Decades later, Laurie goes to sleep next to them (or at least in the same house). She’s the proud owner of two epaulette sharks (Hemiscyllium ocellatum) in her 1,135-liter (300-gallon) tank: bottom-dwelling spotted sharks up to 0.6 meters […]

Gold, Jade, and a 16-Ton Coffin: The Lost Prince of China’s Terracotta Army May Be Found

A recently discovered hidden coffin in the terracotta army may finally confirm a 2,000-year-old legend.

1% of People Never Have Sex and Genetics Might Explain Why

A study of more than 400,000 people found 1% had never had sex – which was linked to a range of genetic, environmental and other factors.

Researchers Say Humans Are In the Midst of an Evolutionary Shift Like Never Before

Humans are evolving faster through culture than through biology.

Archaeologists Found A Rare 30,000-Year-Old Toolkit That Once Belonged To A Stone Age Hunter

An ancient pouch of stone tools brings us face-to-face with one Gravettian hunter.

Scientists Crack the Secret Behind Jackson Pollock’s Vivid Blue in His Most Famous Drip Painting

Chemistry reveals the true origins of a color that electrified modern art.

China Now Uses 80% Artificial Sand. Here's Why That's A Bigger Deal Than It Sounds

No need to disturb water bodies for sand. We can manufacture it using rocks or mining waste — China is already doing it.