homehome Home chatchat Notifications


Defibrillators and pacemakers might soon use light instead of electricity to restart your heart

Closed chest defribillators (the type of defribillators you see on TV) have been around for decades, and for a good reason – because they get the job done. They’re very effective at restoring normal heart rhythm, but they have a big disadvantage: even with fine tuning of modern devices, they hurt like hell. Researchers now […]

Mihai Andrei
September 27, 2013 @ 4:28 am

share Share

Closed chest defribillators (the type of defribillators you see on TV) have been around for decades, and for a good reason – because they get the job done. They’re very effective at restoring normal heart rhythm, but they have a big disadvantage: even with fine tuning of modern devices, they hurt like hell. Researchers now believe they can make it work using light instead of electricity, using genetically engineered light-sensitive stem cells that have been grafted to the heart.

The idea is somewhat similar to the controlled explosions which trigger avalanches – you don’t need to blow up the entire thing, you just need to hit in the strategic places – and this is where the light-sensitive cells come in.  The long term idea is to apply the technology into other major organ systems.

heart

Defibrillation is a common treatment for life-threatening cardiac dysrhythmias. The heartbeat may be too fast or too slow, and may be regular or irregular – and defribillation helps in almost all severe cases. Just like in many fields, computer models did wonders here, revealing that by stimulating in the right place at the right time, much less current needs to be used, and inconveniences like external burns can become a thing of the past. Using these models, they located where to add the new light-sensitive cells, and how many must be used to achieve a desired effect.

A team from John Hopkins recently published a paper in Nature Communications where they describe such a technique based on a computer model. Another group of researchers, from Stanford, have already moved beyond modelling and are preparing to test these ideas in real tissues – and they just received a $600.000 grant to develop their work.

Some 4.000.000 people in the US alone are suffering from some significant degree of heart rhythm abnormality, and many more are suffering from subclinical conditions that would benefit tremendously from this.

share Share

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

We Might Be Ingesting Thousands of Lung-Penetrating Microplastics Daily in Our Homes and Cars — 100x More Than Previously Estimated

Microscopic plastic particles are everywhere and there's more than we thought.

This Scientist Stepped Thousands of Times on Deadly Snakes So You Don't Have To. What He Found Could Save Lives

This scientist is built different.

Scientists Say Junk Food Might Be as Addictive as Drugs

This is especially hurtful for kids.

Tooth nerves aren't just for pain. They also protect your teeth

We should be more thankful for what's in our mouths.

Temporary Tattoo Turns Red If Your Drink Has Been Spiked

This skin-worn patch can detect GHB in drinks in under one second

7,000 Steps a Day Keep the Doctor Away

Just 7,000 steps a day may lower your risk of death, dementia, and depression.

Amish Kids Almost Never Get Allergies and Scientists Finally Know Why

How Amish barns could hold the secret to preventing the onset of allergies.

Surgeons Found a Way to Resuscitate Dead Hearts and It Already Saved A Baby's Life

Can we reboot the human heart? Yes, we can, and this could save many dying babies and adults who are waiting for a transplant.