homehome Home chatchat Notifications


Defibrillators and pacemakers might soon use light instead of electricity to restart your heart

Closed chest defribillators (the type of defribillators you see on TV) have been around for decades, and for a good reason – because they get the job done. They’re very effective at restoring normal heart rhythm, but they have a big disadvantage: even with fine tuning of modern devices, they hurt like hell. Researchers now […]

Mihai Andrei
September 27, 2013 @ 4:28 am

share Share

Closed chest defribillators (the type of defribillators you see on TV) have been around for decades, and for a good reason – because they get the job done. They’re very effective at restoring normal heart rhythm, but they have a big disadvantage: even with fine tuning of modern devices, they hurt like hell. Researchers now believe they can make it work using light instead of electricity, using genetically engineered light-sensitive stem cells that have been grafted to the heart.

The idea is somewhat similar to the controlled explosions which trigger avalanches – you don’t need to blow up the entire thing, you just need to hit in the strategic places – and this is where the light-sensitive cells come in.  The long term idea is to apply the technology into other major organ systems.

heart

Defibrillation is a common treatment for life-threatening cardiac dysrhythmias. The heartbeat may be too fast or too slow, and may be regular or irregular – and defribillation helps in almost all severe cases. Just like in many fields, computer models did wonders here, revealing that by stimulating in the right place at the right time, much less current needs to be used, and inconveniences like external burns can become a thing of the past. Using these models, they located where to add the new light-sensitive cells, and how many must be used to achieve a desired effect.

A team from John Hopkins recently published a paper in Nature Communications where they describe such a technique based on a computer model. Another group of researchers, from Stanford, have already moved beyond modelling and are preparing to test these ideas in real tissues – and they just received a $600.000 grant to develop their work.

Some 4.000.000 people in the US alone are suffering from some significant degree of heart rhythm abnormality, and many more are suffering from subclinical conditions that would benefit tremendously from this.

share Share

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.

Mind Over Mirror: How Cosmetic Enhancements Can Boost Mental Health

Beyond aesthetics, cosmetic surgery can help patients rebuild self-esteem, reduce emotional distress, and improve overall quality of life.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

A small, portable test could revolutionize how we diagnose Alzheimer's

A passive EEG scan could spot memory loss before symptoms begin to show.

2.2 Million Fat-Removal Surgeries a Year: What's Behind the Body Contouring Boom

From liposuction to cryolipolysis, fat-removal is now one of the most common cosmetic choices worldwide.

Labiaplasty Is the Fastest-Growing Cosmetic Surgery Worldwide — And It’s Not Just About Looks

Once a taboo subject, vaginal rejuvenation is now part of a broader conversation about women’s intimate wellness.

Ultra-Processed Foods Made Healthy Young Men Gain Fat and Lose Sperm Quality in Just Three Weeks

Processed foods harmed hormones and fertility markers even with identical calories.

Could AI and venom help us fight antibiotic resistance?

Scientists used AI to mine animal venom for potent new antibiotics.