homehome Home chatchat Notifications


Cicada wing destroys bacteria solely through its physical structure

The veined wing of the clanger cicada kills bacteria is able to destroy bacteria by its structure alone – one of the first structures ever found that can do this. The clanger cicada is an insects that looks like something between a fly and a locust; its wings are covered with a vast hexagonal array […]

Mihai Andrei
March 5, 2013 @ 8:39 am

share Share

The veined wing of the clanger cicada kills bacteria is able to destroy bacteria by its structure alone – one of the first structures ever found that can do this.

The clanger cicada is an insects that looks like something between a fly and a locust; its wings are covered with a vast hexagonal array of ‘nanopillars’ – basically blunted spikes with sizes comparable to that of bacteria. What happens is that when a bacteria settles on this surface, its cellular membrane sticks to the surface of the nanopillars and stretches into the crevices between them, where it experiences the most strain. When the stretch is powerful enough, the membrane ruptures.

Lead study author Elena Ivanova of Australia’s Swinburne University of Technology in Hawthorne, Victoria worked with a team of biophysicists to come up with an advanced nanoscale model of how this happens. She explains that the rupture is much like “the stretching of an elastic sheet of some kind, such as a latex glove. If you take hold of a piece of latex in both hands and slowly stretch it, it will become thinner at the center, [and] will begin to tear”.

cicada

To test their model, the team irradiated bacteria with microwaves to generate cells that had different levels of membrane rigidity. If the model was correct, then the more rigid bacteria would be less likely to rupture between the nanopillars. The results validated their model, but also showed that not all bacteria are destroyed – only those with soft enough membranes.

Further study of the cicada’s wing is needed before its physical-defence properties can be mimicked in man-made materials, but doctors are already rubbing their hands, because if this can be replicated, it could be very useful (say) in hospitals and rooms which you want to keep as bacteria-free as possible.

“This would provide a passive bacteria-killing surface,” she says, adding that it “does not require active agents like detergents, which are often environmentally harmful”.

share Share

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

Science Just Debunked the 'Guns Don’t Kill People' Argument Again. This Time, It's Kids

Guns are the leading cause of death of kids and teens.

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

The amphibian blueprint for regeneration may already be written in our own DNA.

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

The tiny etching is smaller than a speck of dust but signals big advances in materials science.

Drinking Sugar May Be Far Worse for You Than Eating It, Scientists Say

Liquid sugars like soda and juice sharply raise diabetes risk — solid sugars don't.

Muscle bros love their cold plunges. Science says they don't really work (for gains)

The cold plunge may not be helping those gains you work so hard for.